Mesoscopic scale analyses of textile composite reinforcement compaction

Abstract Transverse compaction of textile composite reinforcements is an important deformation mode arising during composite forming and manufacture. The mesoscopic simulations of the transverse compression of textile preforms presented in this paper are based on 3D FE models of each yarn in contact with friction with its neighbours. A hypoelastic model based on the fibre rotation depicts the mechanical behaviour of the yarn. The compression responses of several layer stacks with parallel or different orientations are computed. The numerical simulations show good agreement when compared to compaction experiments. The mesoscopic simulations can be used as virtual compression tests. In addition they determine the internal geometry of the reinforcement after compaction. The internal geometry can be used to compute the permeability of the deformed reinforcement and to calculate the homogenised mechanical properties of the final composite part.

[1]  C. M. van Wyk,et al.  20—NOTE ON THE COMPRESSIBILITY OF WOOL , 1946 .

[2]  Christian Miehe,et al.  A framework for micro–macro transitions in periodic particle aggregates of granular materials , 2004 .

[3]  Constantina Lekakou,et al.  Compressibility and flow permeability of two-dimensional woven reinforcements in the processing of composites , 1996 .

[4]  S. Advani,et al.  Experimental investigation of flow through multi‐layered preforms , 1997 .

[5]  John D. Whitcomb,et al.  Evaluation of homogenization for global/local stress analysis of textile composites , 1995 .

[6]  José Baruchel,et al.  X-Ray Tomography in Material Science , 2000 .

[7]  Julie Chen,et al.  Unit-cell geometry in plain-weave fabrics during shear deformations , 1997 .

[8]  Constantina Lekakou,et al.  Compression and microstructure of fibre plain woven cloths in the processing of polymer composites , 1998 .

[9]  C. Macosko,et al.  Compaction of fiber reinforcements , 2002 .

[10]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[11]  François Robitaille,et al.  Compaction of textile reinforcements for composites manufacturing. I: Review of experimental results , 1998 .

[12]  James A. Sherwood,et al.  A friction model for thermostamping commingled glass–polypropylene woven fabrics , 2007 .

[13]  Gilles Hivet,et al.  Consistent 3D geometrical model of fabric elementary cell. Application to a meshing preprocessor for 3D finite element analysis , 2005 .

[14]  Y. F. Dafalias,et al.  Corotational Rates for Kinematic Hardening at Large Plastic Deformations , 1983 .

[15]  Louise P. Brown,et al.  Modelling the geometry of textile reinforcements for composites: TexGen , 2011 .

[16]  A. Prodromou,et al.  The method of cells and the mechanical properties of textile composites , 2011 .

[17]  Pierre Ladevèze,et al.  Micromodel-based simulations for laminated composites , 2009 .

[18]  Pierre Badel,et al.  Woven fabric permeability : From textile deformation to fluid flow mesoscale simulations , 2008 .

[19]  J. Huetink,et al.  Large deformation simulation of anisotropic material using an updated Lagrangian finite element method , 2007 .

[20]  C. Binetruy,et al.  Unidirectional compression of fibre reinforcements. Part 1: A non-linear elastic-plastic behaviour , 2007 .

[21]  Ignace Verpoest,et al.  Nesting in textile laminates: geometrical modelling of the laminate , 2003 .

[22]  P. Kelly Transverse compression properties of composite reinforcements , 2021, Composite Reinforcements for Optimum Performance.

[23]  F. Trochu,et al.  Flow modeling in composite reinforcements , 2011 .

[24]  F. Trochu,et al.  Numerical analysis of the resin transfer molding process by the finite element method , 1993 .

[25]  Andrew C. Long,et al.  Finite element modelling of fabric compression , 2008 .

[26]  D. Schnur,et al.  An inverse method for determining elastic material properties and a material interface , 1992 .

[27]  J. Dienes On the analysis of rotation and stress rate in deforming bodies , 1979 .

[28]  Jian Cao,et al.  A continuum mechanics-based non-orthogonal constitutive model for woven composite fabrics , 2005 .

[29]  T. Hughes,et al.  Finite rotation effects in numerical integration of rate constitutive equations arising in large‐deformation analysis , 1980 .

[30]  Ignace Verpoest,et al.  Textile composites: modelling strategies , 2000 .

[31]  Guangming Zhou,et al.  Multi-chain digital element analysis in textile mechanics , 2004 .

[32]  François Robitaille,et al.  Compaction of textile reinforcements for composites manufacturing. III: Reorganization of the fiber network , 1999 .

[33]  P. Boisse,et al.  Simulation and tomography analysis of textile composite reinforcement deformation at the mesoscopic scale , 2008 .

[34]  T. G. Rogers Rheological characterization of anisotropic materials , 1989 .

[35]  Tsu-Wei Chou,et al.  Compaction of woven-fabric preforms: nesting and multi-layer deformation , 2000 .

[36]  Piaras Kelly,et al.  Viscoelastic response of dry and wet fibrous materials during infusion processes , 2006 .

[37]  Abdelghani Saouab,et al.  Injection simulations of thick composite parts manufactured by the RTM process , 2001 .

[38]  Jian Cao,et al.  A dual homogenization and finite element approach for material characterization of textile composites , 2002 .

[39]  Philippe Boisse,et al.  Analysis of the mechanical behavior of woven fibrous material using virtual tests at the unit cell level , 2005 .

[40]  L. J. Lee,et al.  Analysis of resin injection molding in molds with preplaced fiber mats. I: Permeability and compressibility measurements , 1991 .

[41]  T. Chou,et al.  Compaction of woven-fabric preforms in liquid composite molding processes: single-layer deformation , 1999 .

[42]  P. Boisse,et al.  Numerical and experimental analyses of woven composite reinforcement forming using a hypoelastic behaviour: Application to the double dome benchmark , 2010 .

[43]  Prasad Potluri,et al.  Compaction modelling of textile preforms for composite structures , 2008 .

[44]  Michael J. King,et al.  A continuum constitutive model for the mechanical behavior of woven fabrics including slip and failure , 2005 .

[45]  Pierre Badel,et al.  Rate constitutive equations for computational analyses of textile composite reinforcement mechanical behaviour during forming , 2009 .

[46]  V. Michaud Permeability properties of reinforcements in composites , 2011 .

[47]  Ignace Verpoest,et al.  Virtual textile composites software WiseTex: Integration with micro-mechanical, permeability and structural analysis , 2005 .

[48]  Timothy G. Gutowski,et al.  The Consolidation of Laminate Composites , 1987 .

[49]  A. K. Pickett,et al.  Meso-modelling of Non-Crimp Fabric composites for coupled drape and failure analysis , 2006 .

[50]  D. Bhattacharyya,et al.  An Experimental Investigation of Non-Elastic Deformation of Fibrous Reinforcements in Composites Manufacturing , 2006 .

[51]  Prasad Potluri,et al.  Analysis of tow deformations in textile preforms subjected to forming forces , 2006 .

[52]  Stepan Vladimirovitch Lomov,et al.  Modelling the geometry of textile reinforcements for composites: WiseTex , 2011 .

[53]  Simon Bickerton,et al.  The viscoelastic compression behavior of liquid composite molding preforms , 2003 .

[54]  I. Verpoest,et al.  Model of shear of woven fabric and parametric description of shear resistance of glass woven reinforcements , 2006 .

[55]  I. Verpoest,et al.  Compressibility and relaxation of a new sandwich textile preform for liquid composite molding , 1999 .

[56]  Joël Bréard,et al.  Analysis of dynamic flows through porous media. Part I: Comparison between saturated and unsaturated flows in fibrous reinforcements , 2003 .

[57]  Ignace Verpoest,et al.  Carbon composites based on multiaxial multiply stitched preforms. Part V: geometry of sheared biaxial fabrics , 2006 .

[58]  P. Boisse,et al.  A Hyperelastic Approach for Composite Reinforcement Large Deformation Analysis , 2010 .

[59]  Pavel Simacek,et al.  The effect of fabric and fiber tow shear on dual scale flow and fiber bundle saturation during liquid molding of textile composites , 2012 .

[60]  V. Michaud,et al.  Infiltration processing of fibre reinforced composites: governing phenomena , 2001 .

[61]  A. J. M. Spencer Theory of fabric-reinforced viscous fluids , 2000 .

[62]  Ignace Verpoest,et al.  Compression of Woven Reinforcements: A Mathematical Model , 2000 .

[63]  Ignace Verpoest,et al.  Permeability prediction for the meso–macro coupling in the simulation of the impregnation stage of Resin Transfer Moulding , 2010 .

[64]  Damien Durville,et al.  Simulation of the mechanical behaviour of woven fabrics at the scale of fibers , 2010 .

[65]  Vistasp M. Karbhari,et al.  Notes on the Modeling of Preform Compaction: I -Micromechanics at the Fiber Bundle Level , 1996 .

[66]  Adrien Charmetant,et al.  Hyperelastic modelling for mesoscopic analyses of composite reinforcements , 2011 .

[67]  P. Kelly,et al.  A viscoelastic model for the compaction of fibrous materials , 2011 .