Идентификация микроорганизмов с применением газовой хромато-масс-спектрометрии

The review presents the basic information available in literature on the use of gas chromatography-massspectrometry. Issues concerning the significance of this method for the identification of microorganisms are discussed. The prospects of creating domestic software and databases of mass spectra of microorganisms are noted.

[1]  W. Eisenreich,et al.  Differential Substrate Usage and Metabolic Fluxes in Francisella tularensis Subspecies holarctica and Francisella novicida , 2017, Front. Cell. Infect. Microbiol..

[2]  V. Dunkel,et al.  Use of fatty acid profiles to identify food-borne bacterial pathogens and aerobic endospore-forming bacilli. , 2005, Journal of agricultural and food chemistry.

[3]  D. S. Kabanov,et al.  Structural analysis of lipopolysaccharides from Gram-negative bacteria , 2010, Biochemistry (Moscow).

[4]  M. Bailey,et al.  Comparison of the fatty acid profiles of Borrelia, Serpulina and Leptospira species. , 1993, Journal of general microbiology.

[5]  T. Inglis,et al.  Cellular Fatty Acid Profile Distinguishes Burkholderia pseudomallei from Avirulent Burkholderia thailandensis , 2003, Journal of Clinical Microbiology.

[6]  P. Janssen,et al.  Cellular Fatty Acid Composition as a Chemotaxonomic Marker for the Differentiation of Phenospecies and Hybridization Groups in the Genus Aeromonas , 1994 .

[7]  Xiao-Yong Zhan,et al.  Legionella qingyii sp. nov., isolated from water samples in China. , 2019, International journal of systematic and evolutionary microbiology.

[8]  Yajun Song,et al.  Distinctness of spore and vegetative cellular fatty acid profiles of some aerobic endospore-forming bacilli. , 2000, Journal of microbiological methods.

[9]  D. White,et al.  Measurement of methanotroph and methanogen signature phosopholipids for use in assessment of biomass and community structure in model systems , 1987 .

[10]  A. N. Kondakova,et al.  Distinct biological activity of lipopolysaccharides with different lipid a acylation status from mutant strains of Yersinia pestis and some members of genus Psychrobacter , 2014, Biochemistry (Moscow).

[11]  D. Birnbaum,et al.  Efficacy of microbial identification system for epidemiologic typing of coagulase-negative staphylococci , 1994, Journal of clinical microbiology.

[12]  D. White,et al.  Characterization of Benthic Microbial Community Structure by High-Resolution Gas Chromatography of Fatty Acid Methyl Esters , 1980, Applied and environmental microbiology.

[13]  É. Carniel,et al.  High Homogeneity of the Yersinia pestisFatty Acid Composition , 2000, Journal of Clinical Microbiology.

[14]  B. Gibson,et al.  Novel Modification of Lipid A of Francisella tularensis , 2004, Infection and Immunity.

[15]  Hayyoung Lee,et al.  The structural basis of lipopolysaccharide recognition by the TLR4–MD-2 complex , 2009, Nature.

[16]  G. Sandström,et al.  Characterization of two unusual clinically significant Francisella strains , 1996, Journal of clinical microbiology.

[17]  C. W. Moss,et al.  Differentiation of Vibrionaceae Species by Their Cellular Fatty Acid Composition , 1983 .