Predictive Analytics of Hyper-Connected Collaborative Network

Thefoundationoftheinfrastructureofacollaborativenetworkforubiquitousconnectivitywillemploy hyper-connectedtechnologiesinsmartandsustainablecities.Typically,therearemillionsofitems forprocessingandanalyticsonthemassivegenerateddata.Thepredictiveanalyticsareindispensable forsuchvolumesofwhichtherearemanydriftsindatastructuresandcontents.Inordertomake betterdecisionsandfutureplanningofubiquity,amodel,andcorrespondenceimplementationare designedanddeveloped.Itbringsdecision-makingtotheexpectedboundaryofcollaborationfor differentperformanceindexes.Theselectedmethodfindscause-and-effectbetweendatatopredict theoptimumresponsestoincomingevents.ThecoreofapproachfocusesonEvent-Condition-Action rulestobuilddecisiontrees,whichhelpsfurtherplanning.Themethodcansummarizecomplexity viaeffectiverecommendeddecisionstolocalexpertsandanalysts. KeywoRDS Decision-Making, Hyper-connected Collaborative Network, Predictive Analytic, Smart City

[1]  Alexis Tsoukiàs,et al.  Discovering Characteristics that Affect Process Control Flow , 2014, EWG-DSS.

[2]  Paolo Falcarin,et al.  Dynamic context-aware business process: a rule-based approach supported by pattern identification , 2010, SAC '10.

[3]  Gregoris Mentzas,et al.  An Aspect Oriented Approach for Implementing Situational Driven Adaptation of BPMN2.0 Workflows , 2012, Business Process Management Workshops.

[4]  Dariusz Brzezinski,et al.  Structural XML Classification in Concept Drifting Data Streams , 2015, New Generation Computing.

[5]  Jan Mendling,et al.  From WS-CDL choreography to BPEL process orchestration , 2008, J. Enterp. Inf. Manag..

[6]  Juha-Pekka Soininen,et al.  Semantic Interoperability Architecture for Pervasive Computing and Internet of Things , 2014, IEEE Access.

[7]  Alexandra Poulovassilis,et al.  Event-Condition-Action Rule Languages for the Semantic Web , 2006, EDBT Workshops.

[8]  R. Kitchin,et al.  The real-time city? Big data and smart urbanism , 2013, GeoJournal.

[9]  Wei-Pang Yang,et al.  Mining decision rules on data streams in the presence of concept drifts , 2009, Expert Syst. Appl..

[10]  Sanjay Ghemawat,et al.  MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.

[11]  Ricardo Seguel,et al.  Process Mining Manifesto , 2011, Business Process Management Workshops.

[12]  Owen Molloy,et al.  Building a Process Performance Model for Business Activity Monitoring , 2007, ISD.

[13]  Kimon P. Valavanis,et al.  On the Measurement of Enterprise Agility , 2002, J. Intell. Robotic Syst..

[14]  Takashi Omori,et al.  ACE: Adaptive Classifiers-Ensemble System for Concept-Drifting Environments , 2005, Multiple Classifier Systems.

[15]  Hendrik Blockeel,et al.  An inductive database system based on virtual mining views , 2011, Data Mining and Knowledge Discovery.

[16]  Marc M. Lankhorst,et al.  Enterprise architecture modelling--the issue of integration , 2004, Adv. Eng. Informatics.

[17]  Tiziana Catarci,et al.  WORKPAD: Process Management and Geo-Collaboration Help Disaster Response , 2013, Int. J. Inf. Syst. Crisis Response Manag..

[18]  Rajeev Motwani,et al.  Load shedding for aggregation queries over data streams , 2004, Proceedings. 20th International Conference on Data Engineering.

[19]  Hervé Pingaud,et al.  Event-driven agility of interoperability during the Run-time of collaborative processes , 2014, Decis. Support Syst..

[20]  Witold Pedrycz,et al.  ECA rule learning in dynamic environments , 2014, Expert Syst. Appl..

[21]  Marcus A. Maloof,et al.  Dynamic Weighted Majority: An Ensemble Method for Drifting Concepts , 2007, J. Mach. Learn. Res..

[22]  Stefanie Rinderle-Ma,et al.  Change patterns and change support features - Enhancing flexibility in process-aware information systems , 2008, Data Knowl. Eng..

[23]  Chloé Clavel,et al.  Using Temporal Association Rules for the Synthesis of Embodied Conversational Agents with a Specific Stance , 2016, IVA.

[24]  Wil M. P. van der Aalst,et al.  Decision Mining in ProM , 2006, Business Process Management.

[25]  William Marsh,et al.  From complex questionnaire and interviewing data to intelligent Bayesian Network models for medical decision support , 2016, Artif. Intell. Medicine.

[26]  Jerzy Stefanowski,et al.  Combining block-based and online methods in learning ensembles from concept drifting data streams , 2014, Inf. Sci..

[27]  Wil M. P. van der Aalst,et al.  A general process mining framework for correlating, predicting and clustering dynamic behavior based on event logs , 2016, Inf. Syst..

[28]  Frederick D. Weil,et al.  The Role of Community in Disaster Response: Conceptual Models , 2010 .

[29]  Rajkumar Buyya,et al.  Big Data computing and clouds: Trends and future directions , 2013, J. Parallel Distributed Comput..

[30]  Hajo A. Reijers,et al.  Configuration vs. adaptation for business process variant maintenance: An empirical study , 2014, Inf. Syst..

[31]  Nancy Williams,et al.  The business value of business intelligence , 2007 .

[32]  Kim Hua Tan,et al.  A Big Data Decision-making Mechanism for Food Supply Chain , 2017 .

[33]  Olegas Vasilecas,et al.  Ontology axioms for the implementation of business rules , 2010 .

[34]  A Min Tjoa,et al.  Sense & response service architecture (SARESA): an approach towards a real-time business intelligence solution and its use for a fraud detection application , 2005, DOLAP '05.

[35]  Zahir Irani,et al.  A decision support model for identification and prioritization of key performance indicators in the logistics industry , 2016, Comput. Hum. Behav..

[36]  Gerhard P. Hancke,et al.  The Role of Advanced Sensing in Smart Cities , 2012, Sensors.

[37]  Ricardo Colomo Palacios,et al.  Real-time business activity monitoring and analysis of process performance on big-data domains , 2016, Telematics Informatics.

[38]  Dongwoo Kang,et al.  An enterprise architecture framework for collaboration of virtual enterprise chains , 2008 .