Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties

Recent advances in the synthesis of semiconductor clusters open a doorway for the systematic study of size-dependent cluster properties in the condensed phase. This article focuses on the size effect on the optical and photophysical properties. The authors first introduce fundamental concepts and proceed to a discussion of recent progress toward the understanding of the quantum size effect and dielectric confinement effect. They then discuss the current status of materials synthesis and the prospect for making monodisperse clusters of well-defined surfaces.