Dislocation stability in three-phase nanocomposites with imperfect interface

[1]  K. Zhou,et al.  Three-phase piezoelectric inclusions of arbitrary shape with internal uniform electroelastic field , 2013 .

[2]  Y. X. Zhao,et al.  Elastic behavior of an edge dislocation inside the nanoscale coating layer , 2012, Acta Mechanica.

[3]  J. Ju,et al.  Effective Elastic Moduli of Spherical Particle Reinforced Composites Containing Imperfect Interfaces , 2012 .

[4]  Leon M. Keer,et al.  Size prediction of particles caused by chipping wear of hard coatings , 2011 .

[5]  J. Luo,et al.  Crack tip opening displacement of a Dugdale crack in a three-phase cylindrical model composite material , 2011 .

[6]  T. Zeng,et al.  Mechanics of advanced fiber reinforced lattice composites , 2010 .

[7]  Jianxiang Wang,et al.  Structural Transformation of Single Wall Carbon Nanotube Bundles under Pressure , 2010 .

[8]  C. Weinberger,et al.  Plasticity of metal wires in torsion: Molecular dynamics and dislocation dynamics simulations , 2010 .

[9]  Tong-Yi Zhang,et al.  Reissner plate theory-based study of circular and annular delamination buckling of a film on a substrate , 2010 .

[10]  K. Zhou,et al.  Elastic fields due to an edge dislocation in an isotropic film-substrate by the image method , 2010 .

[11]  K. Zhou,et al.  Stress field of a disclination dipole in hcp bicrystal with imperfect interface , 2010 .

[12]  Gang Wang,et al.  An analytical solution for the elastic fields near spheroidal nano-inclusions , 2009 .

[13]  P. Wen,et al.  Interaction between a dislocation and a core–shell nanowire with interface effects , 2009 .

[14]  P. Wen,et al.  Effect of interface stresses on the image force and stability of an edge dislocation inside a nanoscale cylindrical inclusion , 2009 .

[15]  Q. Fang,et al.  Interaction between screw dislocations and inclusions with imperfect interfaces in fiber-reinforced composites , 2009 .

[16]  A. A. Nazarov,et al.  Atomistic simulations of the tensile strength of a disclinated bicrystalline nanofilm , 2008 .

[17]  P. Wen,et al.  Screw Dislocations in a Three-Phase Composite Cylinder Model With Interface Stress , 2008 .

[18]  Tong-Yi Zhang,et al.  Size-dependent surface stress, surface stiffness, and Young’s modulus of hexagonal prism [111] β-SiC nanowires , 2008 .

[19]  A. A. Nazarov,et al.  Competing relaxation mechanisms in a disclinated nanowire: temperature and size effects. , 2007, Physical review letters.

[20]  M. S. Wu,et al.  Exact Solutions for Periodic Interfacial Wedge Disclination Dipoles in a Hexagonal Bicrystal , 2006 .

[21]  Xiaolei Wu,et al.  Dislocations in nanocrystalline grains , 2006 .

[22]  A. A. Nazarov,et al.  Continuum and atomistic studies of a disclinated crack in a bicrystalline nanowire , 2006 .

[23]  Bhushan Lal Karihaloo,et al.  Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress , 2005 .

[24]  Q. Fang,et al.  Interaction between a screw dislocation and an elastic elliptical inhomogeneity with interfacial cracks , 2005 .

[25]  L. Sudak Interaction between a Screw Dislocation and a Three-Phase Circular Inhomogeneity with Imperfect Interface , 2003 .

[26]  Pradeep Sharma,et al.  Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities , 2003 .

[27]  Bingjin Chen,et al.  A screw dislocation interacting with inclusions in fiber-reinforced composites , 2002 .

[28]  P. T. Lillehei,et al.  Imaging Carbon Nanotubes in High Performance Polymer Composites via Magnetic Force Microscope , 2002 .

[29]  Vijay B. Shenoy,et al.  Size-dependent elastic properties of nanosized structural elements , 2000 .

[30]  Yang Wei,et al.  Atomistic/continuum simulation of interfacial fracture part I: Atomistic simulation , 1994 .

[31]  Y. Povstenko,et al.  Theoretical investigation of phenomena caused by heterogeneous surface tension in solids , 1993 .

[32]  A. Witvrouw,et al.  Bulk and interface stresses in silver-nickel multilayered thin-films , 1993 .

[33]  Polonsky,et al.  Size effects of dislocation stability in nanocrystals. , 1991, Physical review. B, Condensed matter.

[34]  Zvi Hashin,et al.  The Spherical Inclusion With Imperfect Interface , 1991 .

[35]  Morton E. Gurtin,et al.  A continuum theory of elastic material surfaces , 1975 .

[36]  Morton Lowengrub,et al.  Some Basic Problems of the Mathematical Theory of Elasticity. , 1967 .

[37]  H. Shen,et al.  Stress Analysis of an Elliptic Inclusion with Imperfect Interface in Plane Elasticity , 2001 .

[38]  L. Trusov,et al.  Size effects in micromechanics of nanocrystals , 1993 .

[39]  Jens Lothe John Price Hirth,et al.  Theory of Dislocations , 1968 .