Feature extraction based on minimum classification error/generalized probabilistic descent method

A novel approach to pattern recognition which comprehensively optimizes both a feature extraction process and a classification process is introduced. Assuming that the best features for recognition are the ones that yield the lowest classification error rate over unknown data, an overall recognizer, consisting of a feature extractor module and a classifier module, is trained using the minimum classification error (MCE)/generalized probabilistic descent (GPD) method. Although the proposed discriminative feature extraction approach is a direct and simple extension of MCE/GPD, it is a significant departure from conventional approaches, providing a comprehensive basis for the entire system design. Experimental results are presented for the simple example of optimally designing a cepstrum representation for vowel recognition. The results clearly demonstrate the effectiveness of the proposed method.<<ETX>>

[1]  Shigeru Katagiri,et al.  Application of a generalized probabilistic descent method to dynamic time warping-based speech recognition , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[2]  Chin-Hui Lee,et al.  Segmental GPD training of HMM based speech recognizer , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[3]  Yoh'ichi Tohkura,et al.  A weighted cepstral distance measure for speech recognition , 1987, IEEE Trans. Acoust. Speech Signal Process..

[4]  Shigeru Katagiri,et al.  Prototype-based discriminative training for various speech units , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[5]  Biing-Hwang Juang,et al.  Discriminative learning for minimum error classification [pattern recognition] , 1992, IEEE Trans. Signal Process..

[6]  Biing-Hwang Juang,et al.  On the use of bandpass liftering in speech recognition , 1987, IEEE Trans. Acoust. Speech Signal Process..

[7]  Biing-Hwang Juang,et al.  New discriminative training algorithms based on the generalized probabilistic descent method , 1991, Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop.

[8]  Biing-Hwang Juang,et al.  Discriminative template training for dynamic programming speech recognition , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[9]  Ghen Ohyama,et al.  A new method of cepstrum analysis using comb type quefrency window , 1981 .