Uncertainty and multiple objective calibration in regional water balance modelling: case study in 320 Austrian catchments
暂无分享,去创建一个
Günter Blöschl | Juraj Parajka | Ralf Merz | J. Parajka | R. Merz | G. Blöschl | Günter Blöschl | Ralf Merz
[1] Keith Beven,et al. Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology , 2001 .
[2] S. Sorooshian,et al. Effective and efficient global optimization for conceptual rainfall‐runoff models , 1992 .
[3] Göran Lindström,et al. Development and test of the distributed HBV-96 hydrological model , 1997 .
[4] J. Bahr,et al. Consequences of spatial variability in aquifer properties and data limitations for groundwater modelling practice , 1988 .
[5] G. Blöschl,et al. Distributed Snowmelt Simulations in an Alpine Catchment: 1. Model Evaluation on the Basis of Snow Cover Patterns , 1991 .
[6] Henrik Madsen,et al. Parameter estimation in distributed hydrological catchment modelling using automatic calibration with multiple objectives , 2003 .
[7] G. Blöschl,et al. Distributed Snowmelt Simulations in an Alpine Catchment: 2. Parameter Study and Model Predictions , 1991 .
[8] V. Klemeš,et al. Operational Testing of Hydrological Simulation Models , 2022 .
[9] George Kuczera,et al. The quest for more powerful validation of conceptual catchment models , 1997 .
[10] S. Sorooshian,et al. A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters , 2002 .
[11] Jeffrey J. McDonnell,et al. On the dialog between experimentalist and modeler in catchment hydrology: Use of soft data for multicriteria model calibration , 2002 .
[12] Göran Lindström,et al. A Simple Automatic Calibration Routine for the HBV Model , 1997 .
[13] K. Beven,et al. On constraining the predictions of a distributed model: The incorporation of fuzzy estimates of saturated areas into the calibration process , 1998 .
[14] Stein Beldring,et al. Multi-criteria validation of a precipitation–runoff model , 2002 .
[15] Chuntian Cheng,et al. Combining a fuzzy optimal model with a genetic algorithm to solve multi-objective rainfall–runoff model calibration , 2002 .
[16] T. Meixner. Spatial Patterns in Catchment Hydrology: Observations and Modelling , 2002 .
[17] Günter Blöschl,et al. Advances in the use of observed spatial patterns of catchment hydrological response , 2002 .
[18] George Kuczera,et al. Assessment of hydrologic parameter uncertainty and the worth of multiresponse data , 1998 .
[19] S. Sorooshian,et al. Effective and efficient algorithm for multiobjective optimization of hydrologic models , 2003 .
[20] George Kuczera,et al. Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm , 1998 .
[21] Jan Seibert,et al. Estimation of Parameter Uncertainty in the HBV Model , 1997 .
[22] J. Seibert. Multi-criteria calibration of a conceptual runoff model using a genetic algorithm , 2000 .
[23] Kaisa Miettinen,et al. Nonlinear multiobjective optimization , 1998, International series in operations research and management science.
[24] Keith Beven,et al. The future of distributed models: model calibration and uncertainty prediction. , 1992 .
[25] Günter Blöschl,et al. Regionalisation of catchment model parameters , 2004 .
[26] Ahti Lepistö,et al. Modelling the hydrological behaviour of a mountain catchment using TOPMODEL , 1997 .
[27] G. Blöschl. Rainfall‐Runoff Modeling of Ungauged Catchments , 2006 .
[28] Pao-Shan Yu,et al. Fuzzy multi-objective function for rainfall-runoff model calibration , 2000 .