Development of gradient-enhanced kriging approximations for multidisciplinary design optimization

[1]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[2]  W. Cody,et al.  Rational Chebyshev approximations for the error function , 1969 .

[3]  Approximation of classes of functions , 1972 .

[4]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[5]  M. Powell,et al.  Approximation theory and methods , 1984 .

[6]  S. Rippa,et al.  Numerical Procedures for Surface Fitting of Scattered Data by Radial Functions , 1986 .

[7]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[8]  Jaroslaw Sobieszczanskisobieski,et al.  On the sensitivity of complex, internally coupled systems , 1988 .

[9]  Derek J. Pike,et al.  Empirical Model‐building and Response Surfaces. , 1988 .

[10]  Christopher R. Thewalt,et al.  Neural Network Approaches in Structural Mechanics Computations , 1989 .

[11]  Jerome Sacks,et al.  Designs for Computer Experiments , 1989 .

[12]  William H. Press,et al.  Numerical recipes , 1990 .

[13]  Prabhat Hajela,et al.  Neurobiological Computational Models in Structural Analysis and Design , 1990 .

[14]  S. Batill,et al.  Application of neural networks to preliminary structural design , 1991 .

[15]  Michael Edward Hohn,et al.  An Introduction to Applied Geostatistics: by Edward H. Isaaks and R. Mohan Srivastava, 1989, Oxford University Press, New York, 561 p., ISBN 0-19-505012-6, ISBN 0-19-505013-4 (paperback), $55.00 cloth, $35.00 paper (US) , 1991 .

[16]  S. Batill,et al.  Simulated annealing utilizing neural networks for discrete variable optimization problems in structural design , 1992 .

[17]  P. Hajela,et al.  Applications of artificial neural nets in structural mechanics , 1992 .

[18]  Jacek M. Zurada,et al.  Introduction to artificial neural systems , 1992 .

[19]  Stephen M Batill,et al.  Preliminary Structural Design - Defining the Design Space , 1993 .

[20]  Mohammad Bagher Menhaj,et al.  Training feedforward networks with the Marquardt algorithm , 1994, IEEE Trans. Neural Networks.

[21]  Kroo Ilan,et al.  Multidisciplinary Optimization Methods for Aircraft Preliminary Design , 1994 .

[22]  Douglas C. Montgomery,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[23]  J. -F. M. Barthelemy,et al.  Automatic differentiation as a tool in engineering design , 1992 .

[24]  B. Wujek,et al.  Automatic differentiation for more efficient multidisciplinary design analysis and optimization , 1996 .

[25]  Raphael T. Haftka,et al.  Construction of response surfaces for design optimization applications , 1996 .

[26]  John E. Renaud,et al.  Response surface approximations for discipline coordination in multidisciplinary design optimization , 1996 .

[27]  Douglas O. Stanley,et al.  Approximation model building and multidisciplinary design optimization using response surface methods , 1996 .

[28]  Timothy W. Simpson,et al.  On the Use of Statistics in Design and the Implications for Deterministic Computer Experiments , 1997 .

[29]  William J. Welch,et al.  Computer experiments and global optimization , 1997 .

[30]  Richard S. Sellar Multidisciplinary design using artificial neural networks for discipline coordination and system optimization , 1997 .

[31]  Thomas Sauer Algebraic Aspects of Polynomial Interpolation in Several Variables , 1998 .

[32]  Timothy M. Mauery,et al.  COMPARISON OF RESPONSE SURFACE AND KRIGING MODELS FOR MULTIDISCIPLINARY DESIGN OPTIMIZATION , 1998 .

[33]  Brett Alan Wujek,et al.  Automation enhancements in multidisciplinary design optimization , 1998 .

[34]  Marc Andrew Stelmack A user-interactive, response surface approximation-based framework for multidisciplinary design , 1999 .

[35]  Selden B. Crary,et al.  Optimal Design of Computer Experiments for the Generation of Microsystem Macromodels Using IMSET^TM , 1999 .

[36]  T. Simpson,et al.  Comparative studies of metamodeling techniques under multiple modeling criteria , 2000 .

[37]  Panos Y. Papalambros,et al.  Metamodeling sampling criteria in a global optimization framework , 2000 .

[38]  Weiyu Liu,et al.  Gradient-Enhanced Response Surface Approximations Using Kriging Models , 2002 .

[39]  J. Alonso,et al.  Using gradients to construct cokriging approximation models for high-dimensional design optimization problems , 2002 .

[40]  Thomas J. Santner,et al.  Design and analysis of computer experiments , 1998 .