Random heterogeneous materials via texture synthesis

Abstract Computer models of random heterogeneous materials are becoming increasingly important in order to support the latest advances in material science, biomedical applications and manufacturing. Such models usually take the form of a microstructure whose geometry is reconstructed from a small material sample, an exemplar. A widely used traditional approach to material reconstruction relies on stochastic optimization to approximate the material descriptors of the exemplar, such as volume fraction and two-point correlation functions. This approach is computationally intensive and is limited to certain types of isotropic materials. We show that formulating material reconstruction as a Markov Random Field (MRF) texture synthesis leads to a number of advantages over the traditional optimization-based approaches. These include improved computational efficiency, preservation of many material descriptors, including correlation functions and Minkowski functionals, ability to reconstruct anisotropic materials, and direct use of the gray-scale material images and two-dimensional cross-sections. Quantifying the quality of reconstruction in terms of correlation functions as material descriptors suggests a systematic procedure for selecting a size of neighborhood, a key parameter in the texture synthesis procedure. We support our observations by experiments using implementation with Gaussian pyramid and periodic boundary conditions.

[1]  Tarek I. Zohdi,et al.  Basic Microstructure-Macroproperty Calculations , 2013 .

[2]  Wade Babcock,et al.  Computational materials science , 2004 .

[3]  P. Bickel,et al.  Texture synthesis and nonparametric resampling of random fields , 2006, math/0611258.

[4]  X. Y. Kou,et al.  A simple and effective geometric representation for irregular porous structure modeling , 2010, Comput. Aided Des..

[5]  Joachim Ohser,et al.  3D Images of Materials Structures: Processing and Analysis , 2009 .

[6]  Dirk Müller,et al.  Assessment of the human trabecular bone structure using Minkowski functionals , 2009, Medical Imaging.

[7]  George Deodatis,et al.  Simulation of Multidimensional Binary Random Fields with Application to Modeling of Two-Phase Random Media , 2006 .

[8]  Mingjun Yuan,et al.  Microstructure and mechanical properties of microcellular injection molded polyamide-6 nanocomposites , 2005 .

[9]  Anath Fischer,et al.  Geometric modeling and analysis of bone micro–structures as a base for scaffold design , 2011 .

[10]  T S Smith,et al.  Three‐dimensional microimaging (MRμI and μCT), finite element modeling, and rapid prototyping provide unique insights into bone architecture in osteoporosis , 2001, The Anatomical record.

[11]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[12]  D. Stoyan,et al.  Stochastic Geometry and Its Applications , 1989 .

[13]  F. Stillinger,et al.  Modeling heterogeneous materials via two-point correlation functions: basic principles. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Salvatore Torquato,et al.  STATISTICAL DESCRIPTION OF MICROSTRUCTURES , 2002 .

[15]  X. Kou,et al.  Modeling Functionally Graded Porous Structures with Stochastic Voronoi Diagram and B-Spline Representations , 2010, 2010 International Conference on Manufacturing Automation.

[16]  Salvatore Torquato,et al.  Accurate modeling and reconstruction of three-dimensional percolating filamentary microstructures from two-dimensional micrographs via dilation-erosion method , 2014 .

[17]  Ole Sigmund,et al.  Systematic Design of Metamaterials by Topology Optimization , 2009 .

[18]  Hilfer,et al.  Stochastic reconstruction of sandstones , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[19]  Claudia Redenbach MODELLING FOAM STRUCTURES USING RANDOM TESSELLATIONS , 2009 .

[20]  Mircea Grigoriu,et al.  Probabilistic Models and Simulation of Irregular Masonry Walls , 2008 .

[21]  William B. March,et al.  Fast algorithms for comprehensive n-point correlation estimates , 2012, KDD.

[22]  K R Mecke,et al.  Euler-Poincaré characteristics of classes of disordered media. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  F. Stillinger,et al.  Modeling heterogeneous materials via two-point correlation functions. II. Algorithmic details and applications. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Istv'an Szapudi Introduction to Higher Order Spatial Statistics in Cosmology , 2005 .

[25]  Anath Fischer,et al.  Volumetric texture synthesis of bone micro-structure as a base for scaffold design , 2009, 2009 IEEE International Conference on Shape Modeling and Applications.

[26]  S. Torquato,et al.  Design of smart composite materials using topology optimization , 1999 .

[27]  Chase E. Zachary,et al.  Improved reconstructions of random media using dilation and erosion processes. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  S. Torquato,et al.  Reconstructing random media , 1998 .

[29]  Andreas Wiegmann,et al.  Modeling of Ceramic Foams for Filtration Simulation , 2011 .

[30]  Felipe Marin,et al.  Modeling the Galaxy Three-Point Correlation Function , 2007, 0704.0255.

[31]  Daniel B. Miracle,et al.  Quantitative characterization of spatial clustering in three-dimensional microstructures using two-point correlation functions , 2004 .

[32]  T. Mattfeldt Stochastic Geometry and Its Applications , 1996 .

[33]  Ioannidis,et al.  On the Geometry and Topology of 3D Stochastic Porous Media. , 2000, Journal of colloid and interface science.

[34]  M. Levoy,et al.  Texture synthesis by fixed neighborhood searching , 2001 .

[35]  Wei Chen,et al.  A Hybrid Approach to 3D Porous Microstructure Reconstruction via Gaussian Random Field , 2012 .

[36]  J Ohser,et al.  On the analysis of spatial binary images , 2001, Journal of microscopy.

[37]  Salvatore Torquato,et al.  Modeling of physical properties of composite materials , 2000 .

[38]  Marie-Françoise Devaux,et al.  COMPUTATION OF MINKOWSKI MEASURES ON 2D AND 3D BINARY IMAGES , 2011 .

[39]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[40]  P. Corson,et al.  Correlation functions for predicting properties of heterogeneous materials. II. Empirical construction of spatial correlation functions for two‐phase solids , 1974 .

[41]  R. Hilfer,et al.  Reconstruction of random media using Monte Carlo methods. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[42]  Salvatore Torquato,et al.  Generating random media from limited microstructural information via stochastic optimization , 1999 .

[43]  L. Bécu,et al.  Evidence for three-dimensional unstable flows in shear-banding wormlike micelles. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  Siegfried Schmauder,et al.  Comput. Mater. Sci. , 1998 .

[45]  H. Garmestani,et al.  Microstructure design of a two phase composite using two-point correlation functions , 2004 .

[46]  Ali Shokoufandeh,et al.  Computer-aided design of porous artifacts , 2005, Comput. Aided Des..

[47]  M. Wolcott Cellular solids: Structure and properties , 1990 .

[49]  D. Fullwood,et al.  Gradient-based microstructure reconstructions from distributions using fast Fourier transforms , 2008 .

[50]  Yong Chen,et al.  3D Texture Mapping for Rapid Manufacturing , 2007 .

[51]  Duggento Andrea,et al.  非定常動力学に対する推論の枠組 II 生理学的シグナリングモデルへの応用 , 2008 .

[52]  S. Torquato,et al.  Reconstructing random media. II. Three-dimensional media from two-dimensional cuts , 1998 .

[53]  Stefano Longhi Spiral waves in optical parametric oscillators , 2001 .

[54]  D. Fullwood,et al.  Optimized structure based representative volume element sets reflecting the ensemble-averaged 2-point statistics , 2010 .

[55]  Marc Levoy,et al.  Fast texture synthesis using tree-structured vector quantization , 2000, SIGGRAPH.

[56]  Jitesh H. Panchal,et al.  Key computational modeling issues in Integrated Computational Materials Engineering , 2013, Comput. Aided Des..

[57]  F. Stillinger,et al.  A superior descriptor of random textures and its predictive capacity , 2009, Proceedings of the National Academy of Sciences.

[58]  Lori Graham-Brady,et al.  Stochastic Morphological Modeling of Random Multiphase Materials , 2008 .

[59]  Rudolf Hilfer,et al.  Continuum reconstruction of the pore scale microstructure for Fontainebleau sandstone , 2010 .

[60]  Alexander A. Pasko,et al.  Procedural function-based modelling of volumetric microstructures , 2011, Graph. Model..

[61]  G. Vetrovec DES , 2021, Encyclopedia of Systems and Control.

[62]  Arun M. Gokhale,et al.  Application of image analysis for characterization of spatial arrangements of features in microstructure , 1995 .

[63]  Pejman Tahmasebi,et al.  Multiple-point geostatistical modeling based on the cross-correlation functions , 2012, Computational Geosciences.

[64]  Yanxi Liu,et al.  Near-regular texture analysis and manipulation , 2004, SIGGRAPH 2004.

[65]  Hans-Jörg Vogel,et al.  Topological Characterization of Porous Media , 2002 .

[66]  David R. Clarke,et al.  Interpenetrating Phase Composites , 1992 .

[67]  Sylvain Lefebvre,et al.  State of the Art in Example-based Texture Synthesis , 2009, Eurographics.

[68]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .

[69]  Dietrich Stoyan,et al.  Statistical Physics and Spatial Statistics: The Art Of Analyzing And Modeling Spatial Structures And Pattern Formation , 2010 .

[70]  Yang Li,et al.  A Descriptor-Based Design Methodology for Developing Heterogeneous Microstructural Materials System , 2014 .

[71]  Dietrich Stoyan,et al.  The Boolean Model: from Matheron till today , 2005 .

[72]  M LieshoutvanM.N.,et al.  Stochastic geometry : likelihood and computation , 2000 .

[73]  Alexei A. Efros,et al.  Image quilting for texture synthesis and transfer , 2001, SIGGRAPH.

[74]  Alexander A. Pasko,et al.  Multi-scale space-variant FRep cellular structures , 2013, Comput. Aided Des..

[75]  T. Buchert,et al.  Robust Morphological Measures for Large-Scale Structure in the Universe , 1993 .

[76]  David L. McDowell,et al.  Representation and computational structure-property relations of random media , 2011 .

[77]  Wei Chen,et al.  Descriptor-based methodology for statistical characterization and 3D reconstruction of microstructural materials , 2014 .

[78]  Klaus Mecke,et al.  Additivity, Convexity, and Beyond: Applications of Minkowski Functionals in Statistical Physics , 2000 .

[79]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .