Multidimensional Harmonic Retrieval via Coupled Canonical Polyadic Decomposition—Part I: Model and Identifiability
暂无分享,去创建一个
[1] T. Kailath,et al. A subspace rotation approach to signal parameter estimation , 1986, Proceedings of the IEEE.
[2] Nikos D. Sidiropoulos,et al. Parallel factor analysis in sensor array processing , 2000, IEEE Trans. Signal Process..
[3] Eberhard Freitag,et al. Analytic Functions of Several Complex Variables , 2011 .
[4] Lieven De Lathauwer,et al. Multidimensional Harmonic Retrieval via Coupled Canonical Polyadic Decomposition—Part II: Algorithm and Multirate Sampling , 2017, IEEE Transactions on Signal Processing.
[5] Xiaoli Ma,et al. Ieee Transactions on Signal Processing Multidimensional Frequency Estimation with Finite Snapshots in the Presence of Identical Frequencies , 2022 .
[6] Yonina C. Eldar,et al. An algorithm for exact super-resolution and phase retrieval , 2013, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
[7] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[8] H. Kiers. Towards a standardized notation and terminology in multiway analysis , 2000 .
[9] Thomas Kailath,et al. ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..
[10] Nikos D. Sidiropoulos,et al. Generalizing Carathéodory's uniqueness of harmonic parameterization to N dimensions , 2001, IEEE Trans. Inf. Theory.
[11] Jun Liu,et al. An Eigenvector-Based Approach for Multidimensional Frequency Estimation With Improved Identifiability , 2006, IEEE Transactions on Signal Processing.
[12] Florian Roemer,et al. Higher-Order SVD-Based Subspace Estimation to Improve the Parameter Estimation Accuracy in Multidimensional Harmonic Retrieval Problems , 2008, IEEE Transactions on Signal Processing.
[13] Thomas Kailath,et al. On spatial smoothing for direction-of-arrival estimation of coherent signals , 1985, IEEE Trans. Acoust. Speech Signal Process..
[14] Charles R. Johnson,et al. Matrix Analysis, 2nd Ed , 2012 .
[15] Lieven De Lathauwer,et al. Generic Uniqueness of a Structured Matrix Factorization and Applications in Blind Source Separation , 2016, IEEE Journal of Selected Topics in Signal Processing.
[16] Andrzej Cichocki,et al. Tensor Decompositions for Signal Processing Applications: From two-way to multiway component analysis , 2014, IEEE Signal Processing Magazine.
[17] Martin Vetterli,et al. Exact sampling results for some classes of parametric nonbandlimited 2-D signals , 2004, IEEE Transactions on Signal Processing.
[18] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[19] Lieven De Lathauwer,et al. Blind Signal Separation via Tensor Decomposition With Vandermonde Factor: Canonical Polyadic Decomposition , 2013, IEEE Transactions on Signal Processing.
[20] Lieven De Lathauwer,et al. Canonical Polyadic Decomposition of Third-Order Tensors: Reduction to Generalized Eigenvalue Decomposition , 2013, SIAM J. Matrix Anal. Appl..
[21] Lieven De Lathauwer,et al. New Uniqueness Conditions for the Canonical Polyadic Decomposition of Third-Order Tensors , 2015, SIAM J. Matrix Anal. Appl..
[22] Lieven De Lathauwer,et al. Blind Separation of Exponential Polynomials and the Decomposition of a Tensor in Rank-(Lr, Lr, 1) Terms , 2011, SIAM J. Matrix Anal. Appl..
[23] Lieven De Lathauwer,et al. Multidimensional ESPRIT: A coupled canonical polyadic decomposition approach , 2014, 2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM).
[24] V. Strassen. Rank and optimal computation of generic tensors , 1983 .
[25] P. P. Vaidyanathan,et al. Nested Arrays in Two Dimensions, Part II: Application in Two Dimensional Array Processing , 2012, IEEE Transactions on Signal Processing.
[26] A. Stegeman. On uniqueness conditions for Candecomp/Parafac and Indscal with full column rank in one mode , 2009 .
[27] Lieven De Lathauwer,et al. On the Uniqueness of the Canonical Polyadic Decomposition of Third-Order Tensors - Part II: Uniqueness of the Overall Decomposition , 2013, SIAM J. Matrix Anal. Appl..
[28] Lieven De Lathauwer,et al. Coupled tensor decompositions for applications in array signal processing , 2013, 2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).
[29] Lieven De Lathauwer,et al. Coupled Canonical Polyadic Decompositions and (Coupled) Decompositions in Multilinear Rank- (Lr, n, Lr, n, 1) Terms - Part II: Algorithms , 2015, SIAM J. Matrix Anal. Appl..
[30] Roland Badeau,et al. High-resolution spectral analysis of mixtures of complex exponentials modulated by polynomials , 2006, IEEE Transactions on Signal Processing.
[31] Lieven De Lathauwer,et al. Structured Data Fusion , 2015, IEEE Journal of Selected Topics in Signal Processing.
[32] L. Lathauwer,et al. Sufficient conditions for uniqueness in Candecomp/Parafac and Indscal with random component matrices , 2006, Psychometrika.
[33] Chandra Sekhar Seelamantula,et al. Exact Phase Retrieval for a Class of 2-D Parametric Signals , 2015, IEEE Transactions on Signal Processing.
[34] Giorgio Ottaviani,et al. On Generic Identifiability of 3-Tensors of Small Rank , 2011, SIAM J. Matrix Anal. Appl..
[35] Lieven De Lathauwer,et al. A Link between the Canonical Decomposition in Multilinear Algebra and Simultaneous Matrix Diagonalization , 2006, SIAM J. Matrix Anal. Appl..
[36] S. Unnikrishna Pillai,et al. Forward/backward spatial smoothing techniques for coherent signal identification , 1989, IEEE Trans. Acoust. Speech Signal Process..
[37] Nikos D. Sidiropoulos,et al. Almost sure identifiability of constant modulus multidimensional harmonic retrieval , 2002, IEEE Trans. Signal Process..
[38] S. Leurgans,et al. A Decomposition for Three-Way Arrays , 1993, SIAM J. Matrix Anal. Appl..
[39] Lieven De Lathauwer,et al. On the Uniqueness of the Canonical Polyadic Decomposition of Third-Order Tensors - Part I: Basic Results and Uniqueness of One Factor Matrix , 2013, SIAM J. Matrix Anal. Appl..
[40] Lieven De Lathauwer,et al. Coupled Canonical Polyadic Decompositions and (Coupled) Decompositions in Multilinear Rank-(Lr, n, Lr, n, 1) Terms - Part I: Uniqueness , 2015, SIAM J. Matrix Anal. Appl..
[41] Lieven De Lathauwer,et al. Generic Uniqueness Conditions for the Canonical Polyadic Decomposition and INDSCAL , 2014, SIAM J. Matrix Anal. Appl..
[42] Nikos D. Sidiropoulos,et al. Kruskal's permutation lemma and the identification of CANDECOMP/PARAFAC and bilinear models with constant modulus constraints , 2004, IEEE Transactions on Signal Processing.
[43] Ed F. Deprettere,et al. Analysis of joint angle-frequency estimation using ESPRIT , 2003, IEEE Trans. Signal Process..
[44] Nikos D. Sidiropoulos,et al. Almost sure identifiability of multidimensional harmonic retrieval , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).
[45] K. J. Liu,et al. A high-resolution technique for multidimensional NMR spectroscopy , 1998, IEEE Transactions on Biomedical Engineering.