On a 3D isothermal model for nematic liquid crystals accounting for stretching terms

In the present contribution, we study a PDE system describing the evolution of a nematic liquid crystals flow under kinematic transports for molecules of different shapes. More in particular, the evolution of the velocity fieldu is ruled by the Navier–Stokes incompressible system with a stress tensor exhibiting a special coupling between the transport and the induced terms. The dynamics of the director fieldd is described by a variation of a parabolic Ginzburg–Landau equation with a suitable penalization of the physical constraint |d| = 1. Such equation accounts for both the kinematic transport by the flow field and the internal relaxation due to the elastic energy. The main aim of this contribution is to overcome the lack of a maximum principle for the director equation and prove (without any restriction on the data and on the physical constants of the problem) the existence of global in time weak solutions under physically meaningful boundary conditions on d and u.

[1]  F. Lin,et al.  Nonparabolic dissipative systems modeling the flow of liquid crystals , 1995 .

[2]  Francisco Guillén-González,et al.  Stability for Nematic Liquid Crystals with stretching Terms , 2010, Int. J. Bifurc. Chaos.

[3]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[4]  M. Frémond,et al.  A New Approach to Non-Isothermal Models for Nematic Liquid Crystals , 2011, 1104.1339.

[5]  Maurizio Grasselli,et al.  Finite-dimensional global attractor for a system modeling the 2D nematic liquid crystal flow , 2011, 1210.2124.

[6]  F. Lin,et al.  Static and dynamic theories of liquid crystals , 2001 .

[7]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[8]  F. M. Leslie Theory of Flow Phenomena in Liquid Crystals , 1979 .

[9]  Jie Shen,et al.  On liquid crystal flows with free-slip boundary conditions , 2001 .

[10]  J. Lions Sur certaines équations paraboliques non linéaires , 1965 .

[11]  Daniel Coutand,et al.  Well-posedness of the full Ericksen-Leslie model of nematic liquid crystals , 2001 .

[12]  Chun Liu,et al.  Asymptotic behavior for a nematic liquid crystal model with different kinematic transport properties , 2009, 0901.1751.

[13]  S. Yau Mathematics and its applications , 2002 .

[14]  Jean Leray,et al.  Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .

[15]  川口 光年,et al.  O. A. Ladyzhenskaya: The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Sci. Pub. New York-London, 1963, 184頁, 15×23cm, 3,400円. , 1964 .

[16]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 2014 .

[17]  E. Feireisl,et al.  Singular Limits in Thermodynamics of Viscous Fluids , 2009 .

[18]  Jacques Simeon,et al.  Compact Sets in the Space L~(O, , 2005 .

[19]  Chun Liu,et al.  On energetic variational approaches in modeling the nematic liquid crystal flows , 2008 .

[20]  Hao Wu,et al.  Finite Dimensional Reduction and Convergence to Equilibrium for Incompressible Smectic-A Liquid Crystal Flows , 2010, SIAM J. Math. Anal..

[21]  Jindřich Nečas,et al.  Introduction to the Theory of Nonlinear Elliptic Equations , 1986 .

[22]  Steve Shkoller,et al.  WELL-POSEDNESS AND GLOBAL ATTRACTORS FOR LIQUID CRYSTALS ON RIEMANNIAN MANIFOLDS , 2001, math/0101203.

[23]  Roger Temam,et al.  Steady-state Navier–Stokes equations , 2001 .

[24]  J. Ericksen,et al.  Equilibrium Theory of Liquid Crystals , 1976 .

[25]  G. B. Jeffery The motion of ellipsoidal particles immersed in a viscous fluid , 1922 .

[26]  Elisabetta Rocca,et al.  On the long-time behavior of some mathematical models for nematic liquid crystals , 2011 .

[27]  E. Boschi Recensioni: J. L. Lions - Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Vi;;ars, Paris, 1969; , 1971 .

[28]  J. Simon Compact sets in the spaceLp(O,T; B) , 1986 .