On a 3D isothermal model for nematic liquid crystals accounting for stretching terms
暂无分享,去创建一个
[1] F. Lin,et al. Nonparabolic dissipative systems modeling the flow of liquid crystals , 1995 .
[2] Francisco Guillén-González,et al. Stability for Nematic Liquid Crystals with stretching Terms , 2010, Int. J. Bifurc. Chaos.
[3] J. Lions. Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .
[4] M. Frémond,et al. A New Approach to Non-Isothermal Models for Nematic Liquid Crystals , 2011, 1104.1339.
[5] Maurizio Grasselli,et al. Finite-dimensional global attractor for a system modeling the 2D nematic liquid crystal flow , 2011, 1210.2124.
[6] F. Lin,et al. Static and dynamic theories of liquid crystals , 2001 .
[7] R. Temam,et al. Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .
[8] F. M. Leslie. Theory of Flow Phenomena in Liquid Crystals , 1979 .
[9] Jie Shen,et al. On liquid crystal flows with free-slip boundary conditions , 2001 .
[10] J. Lions. Sur certaines équations paraboliques non linéaires , 1965 .
[11] Daniel Coutand,et al. Well-posedness of the full Ericksen-Leslie model of nematic liquid crystals , 2001 .
[12] Chun Liu,et al. Asymptotic behavior for a nematic liquid crystal model with different kinematic transport properties , 2009, 0901.1751.
[13] S. Yau. Mathematics and its applications , 2002 .
[14] Jean Leray,et al. Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .
[15] 川口 光年,et al. O. A. Ladyzhenskaya: The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Sci. Pub. New York-London, 1963, 184頁, 15×23cm, 3,400円. , 1964 .
[16] R. A. Silverman,et al. The Mathematical Theory of Viscous Incompressible Flow , 2014 .
[17] E. Feireisl,et al. Singular Limits in Thermodynamics of Viscous Fluids , 2009 .
[18] Jacques Simeon,et al. Compact Sets in the Space L~(O, , 2005 .
[19] Chun Liu,et al. On energetic variational approaches in modeling the nematic liquid crystal flows , 2008 .
[20] Hao Wu,et al. Finite Dimensional Reduction and Convergence to Equilibrium for Incompressible Smectic-A Liquid Crystal Flows , 2010, SIAM J. Math. Anal..
[21] Jindřich Nečas,et al. Introduction to the Theory of Nonlinear Elliptic Equations , 1986 .
[22] Steve Shkoller,et al. WELL-POSEDNESS AND GLOBAL ATTRACTORS FOR LIQUID CRYSTALS ON RIEMANNIAN MANIFOLDS , 2001, math/0101203.
[23] Roger Temam,et al. Steady-state Navier–Stokes equations , 2001 .
[24] J. Ericksen,et al. Equilibrium Theory of Liquid Crystals , 1976 .
[25] G. B. Jeffery. The motion of ellipsoidal particles immersed in a viscous fluid , 1922 .
[26] Elisabetta Rocca,et al. On the long-time behavior of some mathematical models for nematic liquid crystals , 2011 .
[27] E. Boschi. Recensioni: J. L. Lions - Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Vi;;ars, Paris, 1969; , 1971 .
[28] J. Simon. Compact sets in the spaceLp(O,T; B) , 1986 .