A power penalty method for discrete HJB equations

We develop a power penalty approach to the discrete Hamilton–Jacobi–Bellman (HJB) equation in $$ \mathbb {R}^N $$ R N in which the HJB equation is approximated by a nonlinear equation containing a power penalty term. We prove that the solution to this penalized equation converges to that of the HJB equation at an exponential rate with respect to the penalty parameter when the control set is finite and the coefficient matrices are M -matrices. Examples are presented to confirm the theoretical findings and to show the efficiency of the new method.

[1]  H. Kushner Numerical Methods for Stochastic Control Problems in Continuous Time , 2000 .

[2]  Li-Zhi Liao,et al.  A Smoothing Newton Method for Extended Vertical Linear Complementarity Problems , 1999, SIAM J. Matrix Anal. Appl..

[3]  Christoph Reisinger,et al.  A Penalty Method for the Numerical Solution of Hamilton-Jacobi-Bellman (HJB) Equations in Finance , 2011, SIAM J. Numer. Anal..

[4]  Christoph Reisinger,et al.  Penalty Methods for the Solution of Discrete HJB Equations - Continuous Control and Obstacle Problems , 2012, SIAM J. Numer. Anal..

[5]  John Rust,et al.  Convergence Properties of Policy Iteration , 2003, SIAM J. Control. Optim..

[6]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[7]  Zhe Sun,et al.  On power penalty methods for linear complementarity problems arising from American option pricing , 2015, J. Glob. Optim..

[8]  Song Wang,et al.  A power penalty method for linear complementarity problems , 2008, Oper. Res. Lett..

[9]  Justin W. L. Wan,et al.  Multigrid Methods for Second Order Hamilton-Jacobi-Bellman and Hamilton-Jacobi-Bellman-Isaacs Equations , 2013, SIAM J. Sci. Comput..

[10]  Song Wang,et al.  A power penalty approach to a Nonlinear Complementarity Problem , 2010, Oper. Res. Lett..

[11]  Kok Lay Teo,et al.  Numerical performance of penalty method for American option pricing , 2010, Optim. Methods Softw..

[12]  Hasnaa Zidani,et al.  Some Convergence Results for Howard's Algorithm , 2009, SIAM J. Numer. Anal..