Parallel Algorithms for Balanced Truncation Model Reduction of Sparse Systems

We describe the parallelization of an efficient algorithm for balanced truncation that allows to reduce models with state-space dimension up to $\mathcal{O}(10^5)$. The major computational task in this approach is the solution of two large-scale sparse Lyapunov equations, performed via a coupled LR-ADI iteration with (super-)linear convergence. Experimental results on a cluster of Intel Xeon processors illustrate the efficacy of our parallel model reduction algorithm.

[1]  A. Varga,et al.  Model reduction software in the SLICOT library , 2000, CACSD. Conference Proceedings. IEEE International Symposium on Computer-Aided Control System Design (Cat. No.00TH8537).

[2]  R. Freund Reduced-Order Modeling Techniques Based on Krylov Subspaces and Their Use in Circuit Simulation , 1999 .

[3]  Enrique S. Quintana-Ortí,et al.  State-space truncation methods for parallel model reduction of large-scale systems , 2003, Parallel Comput..

[4]  Paul Van Dooren,et al.  A collection of benchmark examples for model reduction of linear time invariant dynamical systems. , 2002 .

[5]  R. Freund Model reduction methods based on Krylov subspaces , 2003, Acta Numerica.

[6]  John Lillis,et al.  Interconnect Analysis and Synthesis , 1999 .

[7]  I. Postlethwaite,et al.  Truncated balanced realization of a stable non-minimal state-space system , 1987 .

[8]  Thilo Penzl,et al.  A Cyclic Low-Rank Smith Method for Large Sparse Lyapunov Equations , 1998, SIAM J. Sci. Comput..

[9]  Serkan Gugercin,et al.  A survey of balancing methods for model reduction , 2003, 2003 European Control Conference (ECC).

[10]  Roland W. Freund,et al.  Reduced-order modeling of large passive linear circuits by means of the SYPVL algorithm , 1996, ICCAD 1996.

[11]  I. Duff,et al.  Direct Methods for Sparse Matrices , 1987 .

[12]  Thilo Penzl Algorithms for model reduction of large dynamical systems , 2006 .

[13]  B. Wie,et al.  Approach to large space structure control system design using traditional tools , 1990 .

[14]  Clayton R. Paul,et al.  Analysis of Multiconductor Transmission Lines , 1994 .

[15]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[16]  R. Schneider,et al.  Sonderforschungsbereich 393 Numerische Simulation auf massiv parallelen Rechnern , 2001 .

[17]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[18]  Enrique S. Quintana-Ortí,et al.  Balanced Truncation Model Reduction of Large-Scale Dense Systems on Parallel Computers , 2000 .

[19]  J. Cheng,et al.  Control-Structure Interaction for Space Station Solar Dynamic Power Module , 2004 .

[20]  Luigi Fortuna,et al.  Model Order Reduction Techniques with Applications in Electrical Engineering , 1992 .

[21]  M. Safonov,et al.  A Schur method for balanced-truncation model reduction , 1989 .

[22]  Patrick Amestoy,et al.  MUMPS : A General Purpose Distributed Memory Sparse Solver , 2000, PARA.

[23]  Jacob K. White,et al.  Low-Rank Solution of Lyapunov Equations , 2004, SIAM Rev..

[24]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems (Advances in Design and Control) (Advances in Design and Control) , 2005 .