Actuator fault diagnosis for flat systems: A constraint satisfaction approach

This paper describes a robust set-membership-based Fault Detection and Isolation (FDI) technique for a particular class of nonlinear systems, the so-called flat systems. The proposed strategy consists in checking if the expected input value belongs to an estimated feasible set computed using the system model and the derivatives of the measured output vector. The output derivatives are computed using a numerical differentiator. The set-membership estimator design for the input vector takes into account the measurement noise thereby making the consistency test robust. The performances of the proposed strategy are illustrated through a three-tank system simulation affected by actuator faults.

[1]  Rolf Isermann,et al.  Trends in the Application of Model Based Fault Detection and Diagnosis of Technical Processes , 1996 .

[2]  Vicenç Puig,et al.  Benchmarking on Approaches to Interval Observation Applied to Robust Fault Detection , 2003, COCOS.

[3]  M. Staroswiecki,et al.  Fault estimation in nonlinear uncertain systems using robust/sliding-mode observers , 2004 .

[4]  Wen Chen,et al.  A variable structure adaptive observer approach for actuator fault detection and diagnosis in uncertain nonlinear systems , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[5]  A. Krener,et al.  Nonlinear controllability and observability , 1977 .

[6]  Inseok Hwang,et al.  A Survey of Fault Detection, Isolation, and Reconfiguration Methods , 2010, IEEE Transactions on Control Systems Technology.

[7]  Christopher Edwards,et al.  A sliding mode observer based FDI scheme for the ship benchmark , 1999, 1999 European Control Conference (ECC).

[8]  David Henry,et al.  Design of nonlinear observers for fault diagnosis: A case study , 1996 .

[9]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[10]  Abdelhalim Lalami,et al.  Generation of Set Membership Tests for Fault Diagnosis and Evaluation of their Worst Case Sensitivity , 2007 .

[11]  Alberto Isidori,et al.  On the design of fault detection filters with game‐theoretic‐optimal sensitivity , 2002 .

[12]  A. Neumaier Complete search in continuous global optimization and constraint satisfaction , 2004, Acta Numerica.

[13]  Q. P. Haa,et al.  State and input simultaneous estimation for a class of nonlinear systems , 2004 .

[14]  Jie Chen,et al.  Robust Model-Based Fault Diagnosis for Dynamic Systems , 1998, The International Series on Asian Studies in Computer and Information Science.

[15]  Cédric Join,et al.  CONTROL OF AN UNCERTAIN THREE-TANK SYSTEM VIA ON-LINE PARAMETER IDENTIFICATION AND FAULT DETECTION , 2005 .

[16]  Michèle Basseville,et al.  Fault Detection and Isolation in Nonlinear Dynamic Systems: A Combined Input-Output and Local Approach , 1998, Autom..

[17]  Olivier Bernard,et al.  Near optimal interval observers bundle for uncertain bioreactors , 2007, 2007 European Control Conference (ECC).

[18]  A. Levant,et al.  Higher order sliding modes and arbitrary-order exact robust differentiation , 2001, 2001 European Control Conference (ECC).

[19]  Luc Jaulin,et al.  Applied Interval Analysis , 2001, Springer London.

[20]  Ali Zolghadri,et al.  Interval observer design for consistency checks of nonlinear continuous-time systems , 2010, Autom..

[21]  Hong Wang,et al.  On the use of adaptive updating rules for actuator and sensor fault diagnosis , 1997, Autom..

[22]  P. Frank,et al.  An Adaptive Observer-Based Fault Detection Scheme for Nonlinear Dynamic Systems , 1993 .

[23]  Avrie Levent,et al.  Robust exact differentiation via sliding mode technique , 1998, Autom..

[24]  Eric Walter,et al.  Set inversion via interval analysis for nonlinear bounded-error estimation , 1993, Autom..

[25]  Didier Theilliol,et al.  Fault diagnosis and accommodation of a three-tank system based on analytical redundancy. , 2002, ISA transactions.

[26]  Martin J. Corless,et al.  State and Input Estimation for a Class of Uncertain Systems , 1998, Autom..

[27]  József Bokor,et al.  Fault detection and isolation in nonlinear systems , 2009, Annu. Rev. Control..

[28]  Steven X. Ding,et al.  Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools , 2008 .

[29]  Niels Kjølstad Poulsen,et al.  Active Fault Diagnosis Based on Stochastic Tests , 2008, Int. J. Appl. Math. Comput. Sci..

[30]  Arie Levant,et al.  Higher-order sliding modes, differentiation and output-feedback control , 2003 .

[31]  Eduardo D. Sontag,et al.  I/O equations for nonlinear systems and observation spaces , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[32]  B. Mazari,et al.  Fault Reconstruction Using Sliding Mode Observers , 2006 .

[33]  M. Moisan,et al.  Robust Interval Observers for Uncertain Chaotic Systems , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[34]  David Henry,et al.  A method for designing fault diagnosis filters for LPV polytopic systems , 2008 .

[35]  Hong Wang,et al.  Fault Diagnosis and Fault Tolerant Control for Non-Gaussian Stochastic Systems with Random Parameters , 2002 .

[36]  Gary J. Balas,et al.  Detection filter design for LPV systems - a geometric approach , 2004, Autom..

[37]  Robert M. Pap,et al.  Fault Diagnosis , 1990, Bayesian Networks in Fault Diagnosis.

[38]  F. Caccavale,et al.  An adaptive observer for fault diagnosis in nonlinear discrete-time systems , 2008, Proceedings of the 2004 American Control Conference.

[39]  David Henry,et al.  Robust fault diagnosis in uncertain linear parameter-varying systems , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[40]  Hieu Minh Trinh,et al.  State and input simultaneous estimation for a class of nonlinear systems , 2004, Autom..

[41]  Alex M. Andrew,et al.  Fault Diagnosis: Models, Artificial Intelligence, Applications , 2005 .

[42]  Yusheng Liu,et al.  Robust adaptive observer for nonlinear systems with unmodeled dynamics , 2009, Autom..

[43]  Jean-Luc Gouzé,et al.  Closed loop observers bundle for uncertain biotechnological models , 2004 .

[44]  Hong Wang,et al.  Design of fault diagnosis filters and fault-tolerant control for a class of nonlinear systems , 2001, IEEE Trans. Autom. Control..

[45]  J. R. Noriega,et al.  Fault diagnosis for unknown non-linear systems via neural networks and its comparisons and combinations with recursive least-squares based techniques , 2001 .

[46]  Miguel A. Salido,et al.  A fine-grained arc-consistency algorithm for non-normalized constraint satisfaction problems , 2011, Int. J. Appl. Math. Comput. Sci..

[47]  Vicenç Puig,et al.  Robust Fault Detection Using Linear Interval Observers , 2003 .

[48]  Rolf Isermann,et al.  Trends in the Application of Model Based Fault Detection and Diagnosis of Technical Processes , 1996 .

[49]  Vicenç Puig,et al.  Fault diagnosis and fault tolerant control using set-membership approaches: Application to real case studies , 2010, Int. J. Appl. Math. Comput. Sci..

[50]  Vicenç Puig,et al.  Robust fault detection using zonotope‐based set‐membership consistency test , 2009 .

[51]  Luigi Villani,et al.  Fault Diagnosis and Fault Tolerance for Mechatronic Systems: Recent Advances , 2003 .

[52]  Harold R. Parks,et al.  The Implicit Function Theorem , 2002 .

[53]  Gildas Besancon,et al.  FURTHER DEVELOPMENTS ON ADAPTIVE OBSERVERS FOR NONLINEAR SYSTEMS WITH APPLICATION IN FAULT DETECTION , 2002 .

[54]  J. Gouzé,et al.  Interval observers for uncertain biological systems , 2000 .

[55]  David L. Waltz,et al.  Generating Semantic Descriptions From Drawings of Scenes With Shadows , 1972 .

[56]  Hong Wang,et al.  Applying observer based FDI techniques to detect faults in dynamic and bounded stochastic distributions , 2000 .

[57]  Didier Maquin,et al.  PARAMETER UNCERTAINTIES CHARACTERISATION FOR LINEAR MODELS , 2006 .

[58]  Luc Jaulin Combining Interval Analysis with Flatness Theory for State Estimation of Sailboat Robots , 2012, Math. Comput. Sci..

[59]  Christophe Combastel,et al.  Generation of Set Membership Tests for Fault Diagnosis and Evaluation of their Worst Case Sensitivity , 2006 .

[60]  Alessandro Pisano,et al.  Fault detection and reconstruction for a three-tank system via high-order sliding-mode observer , 2009, 2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC).

[61]  Alberto Isidori,et al.  A geometric approach to nonlinear fault detection and isolation , 2000, IEEE Trans. Autom. Control..

[62]  Didier Maquin,et al.  Sliding mode multiple observer for fault detection and isolation , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[63]  Christopher Edwards,et al.  Adaptive Sliding-Mode-Observer-Based Fault Reconstruction for Nonlinear Systems With Parametric Uncertainties , 2008, IEEE Transactions on Industrial Electronics.

[64]  B. Jiang,et al.  NONLINEAR MODEL DECOMPOSITION FOR ROBUST FAULT DETECTION AND ISOLATION USING ALGEBRAIC TOOLS , 2006 .

[65]  J. Bokor,et al.  DETECTION FILTER DESIGN FOR LPV SYSTEMS – A GEOMETRIC APPROACH , 2002 .

[66]  Hong Wang,et al.  Actuator fault diagnosis: an adaptive observer-based technique , 1996, IEEE Trans. Autom. Control..

[67]  Wojciech Cholewa,et al.  Fault Diagnosis , 2004, Springer Berlin Heidelberg.

[68]  Stéphane Ploix,et al.  Causal fault detection and isolation based on a set-membership approach , 2004, Autom..