Interval-valued regression and classication models in the framework of machine learning

We present a new approach for constructing regression and classication models for interval-valued data. The risk functional is considered under a set of probability distributions, resulting from the application of a chosen inferential method to the data, such that the bounding distributions of the set depend on the regression and classication parameter. Two extreme (‘pessimistic’ and ‘optimistic’) strategies of decision making are presented. The method is applicable with many inferential methods and risk functionals. The general theory is presented together with the specic optimisation problems for several scenarios, including the extension of the support vector machine method for interval-valued data.

[1]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[2]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[3]  R. Koenker,et al.  Robust Tests for Heteroscedasticity Based on Regression Quantiles , 1982 .

[4]  Thomas M. Strat,et al.  Decision analysis using belief functions , 1990, Int. J. Approx. Reason..

[5]  Hisao Ishibuchi,et al.  DISCRIMINANT ANALYSIS OF MULTI-DIMENSIONAL INTERVAL DATA AND ITS APPLICATION TO CHEMICAL SENSING , 1990 .

[6]  P. Walley Statistical Reasoning with Imprecise Probabilities , 1990 .

[7]  Christian P. Robert,et al.  The Bayesian choice , 1994 .

[8]  Hung T. Nguyen,et al.  On decision making using belief functions , 1994 .

[9]  L. Wasserman,et al.  Inferences from multinomial data: Learning about a bag of marbles - Discussion , 1996 .

[10]  P. Walley Inferences from Multinomial Data: Learning About a Bag of Marbles , 1996 .

[11]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[12]  Hideo Tanaka,et al.  Interval regression analysis by quadratic programming approach , 1998, IEEE Trans. Fuzzy Syst..

[13]  Philippe Nivlet,et al.  Interval Discriminant Analysis: An Efficient Method to Integrate Errors In Supervised Pattern Recognition , 2001, ISIPTA.

[14]  Massimiliano Pontil,et al.  Regularization and statistical learning theory for data analysis , 2002 .

[15]  Gert de Cooman,et al.  Updating beliefs with incomplete observations , 2003, Artif. Intell..

[16]  Thierry Denoeux,et al.  Nonparametric regression analysis of uncertain and imprecise data using belief functions , 2004, Int. J. Approx. Reason..

[17]  Thomas Augustin,et al.  Nonparametric predictive inference and interval probability , 2004 .

[18]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machine Classifiers , 1999, Neural Processing Letters.

[19]  Elmar Kriegler,et al.  Utilizing belief functions for the estimation of future climate change , 2005, Int. J. Approx. Reason..

[20]  Gert de Cooman,et al.  Imprecise probability models for inference in exponential families , 2005, ISIPTA.

[21]  Thomas Augustin,et al.  Powerful algorithms for decision making under partial prior information and general ambiguity attitudes , 2005, ISIPTA.

[22]  Johan A. K. Suykens,et al.  Handling missing values in support vector machine classifiers , 2005, Neural Networks.

[23]  A. Atiya,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2005, IEEE Transactions on Neural Networks.

[24]  Paula Brito,et al.  Linear discriminant analysis for interval data , 2006, Comput. Stat..

[25]  Astride Aregui Constructing Predictive Belief Functions from Continuous Sample Data Using Confidence Bands , 2007 .

[26]  Gm Gero Walter,et al.  Linear regression analysis under sets of conjugate priors , 2007 .

[27]  R. Koenker,et al.  Regression Quantiles , 2007 .

[28]  F. Plastria,et al.  Classification problems with imprecise data through separating hyperplanes , 2007 .

[29]  L. Utkin,et al.  Computing expectations with p-boxes: two views of the same problem , 2007 .

[30]  Didier Dubois,et al.  Unifying practical uncertainty representations. II: Clouds , 2008, Int. J. Approx. Reason..

[31]  Arthur P. Dempster,et al.  Upper and Lower Probabilities Induced by a Multivalued Mapping , 1967, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[32]  Davide Anguita,et al.  Support vector machines for interval discriminant analysis , 2008, Neurocomputing.

[33]  Francisco de A. T. de Carvalho,et al.  Centre and Range method for fitting a linear regression model to symbolic interval data , 2008, Comput. Stat. Data Anal..

[34]  Sébastien Destercke,et al.  Computing expectations with continuous p-boxes: Univariate case , 2009, Int. J. Approx. Reason..

[35]  Pei-Yi Hao,et al.  Interval regression analysis using support vector networks , 2009, Fuzzy Sets Syst..

[36]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[37]  Lev V. Utkin Regression analysis using the imprecise Bayesian normal model , 2010, Int. J. Data Anal. Tech. Strateg..

[38]  Lev V. Utkin and Frank P.A. Coolen On Reliability Growth Models Using Kolmogorov-Smirnov Bounds , 2011 .