Simulating realistic non-Gaussian state preparation

We consider conditional photonic non-Gaussian state preparation using multimode Gaussian states and photon-number-resolving detectors in the presence of photon loss. While simulation of such state preparation is often computationally challenging, we show that obtaining the required multimode Gaussian state Fock matrix elements can be reduced to the computation of matrix functions known as loop hafnians, and develop a tailored algorithm for their calculation that is faster than previously known methods. As an example of its utility, we use our algorithm to explore the loss parameter space for three specific non-Gaussian state preparation schemes: Fock state heralding, cat state heralding, and weak cubic-phase state heralding. We confirm that these schemes are fragile with respect to photon loss, yet find that there are regions in the loss parameter space that are potentially accessible in an experimental setting which correspond to heralded states with non-zero non-Gaussianity.

[1]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[2]  Zach DeVito,et al.  Opt , 2017 .

[3]  Julien Laurat,et al.  High-fidelity single-photon source based on a Type II optical parametric oscillator. , 2012, Optics letters.

[4]  Matteo G. A. Paris,et al.  Assessing the significance of fidelity as a figure of merit in quantum state reconstruction of discrete and continuous-variable systems , 2016, 1604.00313.

[5]  N. Killoran,et al.  Strawberry Fields: A Software Platform for Photonic Quantum Computing , 2018, Quantum.

[6]  Jeffrey H. Shapiro,et al.  Hardware-efficient bosonic quantum error-correcting codes based on symmetry operators , 2017, 1709.05302.

[7]  N J Cerf,et al.  Non-Gaussian cloning of quantum coherent states is optimal. , 2005, Physical review letters.

[8]  Seth Lloyd,et al.  Advances in photonic quantum sensing , 2018, Nature Photonics.

[9]  A. Serafini Quantum Continuous Variables: A Primer of Theoretical Methods , 2017 .

[10]  E. Sudarshan Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams , 1963 .

[11]  Christine Silberhorn,et al.  Continuous‐variable quantum information processing , 2010, 1008.3468.

[12]  Peter van Loock,et al.  Optical hybrid approaches to quantum information , 2010, 1002.4788.

[13]  Marian Squeezed states with thermal noise. I. Photon-number statistics. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[14]  Dodonov,et al.  Multidimensional Hermite polynomials and photon distribution for polymode mixed light. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[15]  Kodi Husimi,et al.  Some Formal Properties of the Density Matrix , 1940 .

[16]  Masahide Sasaki,et al.  Photon subtracted squeezed states generated with periodically poled KTiOPO(4). , 2007, Optics express.

[17]  M. Paris,et al.  Resource theory of quantum non-Gaussianity and Wigner negativity , 2018, Physical Review A.

[18]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[19]  Josh Izaac,et al.  Production of photonic universal quantum gates enhanced by machine learning , 2019, Physical Review A.

[20]  Ryuji Takagi,et al.  Convex resource theory of non-Gaussianity , 2018, Physical Review A.

[21]  F. Illuminati,et al.  Optimal estimation of losses at the ultimate quantum limit with non-Gaussian states , 2008, 0807.3958.

[22]  Gebräuchliche Fertigarzneimittel,et al.  V , 1893, Therapielexikon Neurologie.

[23]  J. Rarity,et al.  Photonic quantum technologies , 2009, 1003.3928.

[24]  J. Emerson,et al.  Corrigendum: Negative quasi-probability as a resource for quantum computation , 2012, 1201.1256.

[25]  Ulrik L Andersen,et al.  Integrated source of broadband quadrature squeezed light. , 2015, Optics express.

[26]  Júlia Ferrer Ortas,et al.  High production rate of single-photon and two-photon Fock states for quantum state engineering. , 2018, Optics express.

[27]  J. Sipe,et al.  Strongly driven nonlinear quantum optics in microring resonators , 2015, 1508.03741.

[28]  Philip Walther,et al.  Continuous‐Variable Quantum Key Distribution with Gaussian Modulation—The Theory of Practical Implementations , 2017, Advanced Quantum Technologies.

[29]  Diagonal Coherent-State Representation of Quantum Operators , 1967 .

[30]  Debbie W. Leung,et al.  Bosonic quantum codes for amplitude damping , 1997 .

[31]  Juan Miguel Arrazola,et al.  Using Gaussian Boson Sampling to Find Dense Subgraphs. , 2018, Physical review letters.

[32]  Akira Furusawa,et al.  Hybrid quantum information processing , 2013, 1409.3719.

[33]  Yu Shiozawa,et al.  Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing , 2016, 1606.06688.

[34]  N. Quesada Franck-Condon factors by counting perfect matchings of graphs with loops. , 2018, The Journal of chemical physics.

[35]  Akira Furusawa,et al.  Toward large-scale fault-tolerant universal photonic quantum computing , 2019, APL Photonics.

[36]  日本数学物理学会 Proceedings of the Physico-Mathematical Society of Japan. 3rd series = Nippon Sugaku-buturigakkwai kizi. Dai 3 ki , 1919 .

[37]  Krishna Kumar Sabapathy,et al.  Non-Gaussian operations on bosonic modes of light: Photon-added Gaussian channels , 2016, 1604.07859.

[38]  R. Simon,et al.  Operator-sum representation for bosonic Gaussian channels , 2010, 1012.4266.

[39]  Shota Yokoyama,et al.  Ultra-large-scale continuous-variable cluster states multiplexed in the time domain , 2013, Nature Photonics.

[40]  Julien Laurat,et al.  Generating Optical Schrödinger Kittens for Quantum Information Processing , 2006, Science.

[41]  Liang Jiang,et al.  Cat Codes with Optimal Decoherence Suppression for a Lossy Bosonic Channel. , 2016, Physical review letters.

[42]  V. Altuzar,et al.  Atmospheric pollution profiles in Mexico City in two different seasons , 2003 .

[43]  Christian Weedbrook,et al.  ON states as resource units for universal quantum computation with photonic architectures , 2018, Physical Review A.

[44]  Egyes tételeknél,et al.  B-1 , 2018, Houston Rap Tapes.

[45]  Xian Ma,et al.  Arbitrarily large continuous-variable cluster states from a single quantum nondemolition gate. , 2010, Physical review letters.

[46]  Nicolas J Cerf,et al.  No-go theorem for gaussian quantum error correction. , 2008, Physical review letters.

[47]  E S Polzik,et al.  High purity bright single photon source. , 2007, Optics express.

[48]  Liang Jiang,et al.  New class of quantum error-correcting codes for a bosonic mode , 2016, 1602.00008.

[49]  Philippe Grangier,et al.  Quantum homodyne tomography of a two-photon Fock state. , 2006, Physical review letters.

[50]  G. Guerreschi,et al.  Boson sampling for molecular vibronic spectra , 2014, Nature Photonics.

[51]  Igor Jex,et al.  Gaussian Boson sampling , 2016, 2017 Conference on Lasers and Electro-Optics (CLEO).

[52]  About the use of fidelity in continuous variable systems , 2014, 1402.0976.

[53]  Shuntaro Takeda,et al.  Universal Quantum Computing with Measurement-Induced Continuous-Variable Gate Sequence in a Loop-Based Architecture. , 2017, Physical review letters.

[54]  Michael Hardy Combinatorics of Partial Derivatives , 2006, Electron. J. Comb..

[55]  Brian J. Smith,et al.  Experimental generation of multi-photon Fock states. , 2012, Optics express.

[56]  Liang Jiang,et al.  Implementing a universal gate set on a logical qubit encoded in an oscillator , 2016, Nature Communications.

[57]  R. Filip,et al.  Loop-based subtraction of a single photon from a traveling beam of light. , 2018, Optics express.

[58]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[59]  S. Braunstein,et al.  Quantum Information with Continuous Variables , 2004, quant-ph/0410100.

[60]  Andreas Björklund,et al.  A Faster Hafnian Formula for Complex Matrices and Its Benchmarking on a Supercomputer , 2018, ACM J. Exp. Algorithmics.

[61]  J Fan,et al.  Invited review article: Single-photon sources and detectors. , 2011, The Review of scientific instruments.

[62]  Olivier Pfister,et al.  One-way quantum computing in the optical frequency comb. , 2008, Physical review letters.

[63]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[64]  Seth Lloyd,et al.  Quantum Computation over Continuous Variables , 1999 .

[65]  C. Gardiner,et al.  Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics , 2004 .

[66]  runden Tisch,et al.  AM , 2020, Catalysis from A to Z.

[67]  Krishna Kumar Sabapathy,et al.  Robustness of non-Gaussian entanglement against noisy amplifier and attenuator environments. , 2011, Physical review letters.

[68]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[69]  Two-color squeezing and sub-shot-noise signal recovery in doubly resonant optical parametric oscillators. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[70]  P. Knight,et al.  Quantum superpositions and Schrödinger cat states in quantum optics , 1997 .

[71]  A. Furusawa,et al.  Hybrid discrete- and continuous-variable quantum information , 2014, Nature Physics.

[72]  Raymond Kan From moments of sum to moments of product , 2008 .

[73]  Sean D. Huver,et al.  Entangled Fock states for Robust Quantum Optical Metrology, Imaging, and Sensing , 2008, 0805.0296.

[74]  Michal Lipson,et al.  On-Chip Optical Squeezing , 2013, 1309.6371.

[75]  Casper R. Breum,et al.  Fiber-coupled EPR-state generation using a single temporally multiplexed squeezed light source , 2018, 1812.05358.

[76]  Christine Silberhorn,et al.  Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks. , 2004, Physical review letters.

[77]  R. Morandotti,et al.  Integrated sources of photon quantum states based on nonlinear optics , 2017, Light: Science & Applications.

[78]  Timothy C. Ralph,et al.  Simulation of Gaussian channels via teleportation and error correction of Gaussian states , 2018, Physical Review A.

[79]  T. Anhut,et al.  Generating Schrödinger-cat-like states by means of conditional measurements on a beam splitter , 1997 .

[80]  Olivier Pfister,et al.  Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb. , 2013, Physical review letters.

[81]  Samuel L Braunstein,et al.  Multi-dimensional Hermite polynomials in quantum optics , 2001 .

[82]  J. Dowling Quantum optical metrology – the lowdown on high-N00N states , 2008, 0904.0163.

[83]  Victor V. Albert,et al.  Performance and structure of single-mode bosonic codes , 2017, 1708.05010.

[84]  Characterizing teleportation in optics , 1999, quant-ph/9903003.

[85]  Barry C. Sanders,et al.  Universal continuous-variable quantum computation: Requirement of optical nonlinearity for photon counting , 2002 .

[86]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[87]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[88]  Peter P Rohde,et al.  Scalable boson sampling with time-bin encoding using a loop-based architecture. , 2014, Physical review letters.

[89]  Nathan Wiebe,et al.  Efficient simulation scheme for a class of quantum optics experiments with non-negative Wigner representation , 2012, 1210.1783.

[90]  Sae Woo Nam,et al.  Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum , 2010, 1004.2727.

[91]  Victor Veitch,et al.  The resource theory of stabilizer quantum computation , 2013, 1307.7171.

[92]  C. Fabre,et al.  Wavelength-multiplexed quantum networks with ultrafast frequency combs , 2013, Nature Photonics.

[93]  P. Marian,et al.  Squeezed states with thermal noise. II. Damping and photon counting. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[94]  J Eisert,et al.  Positive Wigner functions render classical simulation of quantum computation efficient. , 2012, Physical review letters.

[95]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.