A targeted next-generation sequencing assay for the molecular diagnosis of genetic disorders with orodental involvement

Background Orodental diseases include several clinically and genetically heterogeneous disorders that can present in isolation or as part of a genetic syndrome. Due to the vast number of genes implicated in these disorders, establishing a molecular diagnosis can be challenging. We aimed to develop a targeted next-generation sequencing (NGS) assay to diagnose mutations and potentially identify novel genes mutated in this group of disorders. Methods We designed an NGS gene panel that targets 585 known and candidate genes in orodental disease. We screened a cohort of 101 unrelated patients without a molecular diagnosis referred to the Reference Centre for Oro-Dental Manifestations of Rare Diseases, Strasbourg, France, for a variety of orodental disorders including isolated and syndromic amelogenesis imperfecta (AI), isolated and syndromic selective tooth agenesis (STHAG), isolated and syndromic dentinogenesis imperfecta, isolated dentin dysplasia, otodental dysplasia and primary failure of tooth eruption. Results We discovered 21 novel pathogenic variants and identified the causative mutation in 39 unrelated patients in known genes (overall diagnostic rate: 39%). Among the largest subcohorts of patients with isolated AI (50 unrelated patients) and isolated STHAG (21 unrelated patients), we had a definitive diagnosis in 14 (27%) and 15 cases (71%), respectively. Surprisingly, COL17A1 mutations accounted for the majority of autosomal-dominant AI cases. Conclusions We have developed a novel targeted NGS assay for the efficient molecular diagnosis of a wide variety of orodental diseases. Furthermore, our panel will contribute to better understanding the contribution of these genes to orodental disease. Trial registration numbers NCT01746121 and NCT02397824.

[1]  Véronique Geoffroy,et al.  Distributed under Creative Commons Cc-by 4.0 Varank: a Simple and Powerful Tool for Ranking Genetic Variants , 2022 .

[2]  Colin A. Johnson,et al.  Variability of systemic and oro-dental phenotype in two families with non-lethal Raine syndrome with FAM20C mutations , 2015, BMC Medical Genetics.

[3]  G. Mortier,et al.  Mutations in the latent TGF-beta binding protein 3 (LTBP3) gene cause brachyolmia with amelogenesis imperfecta , 2015, Human molecular genetics.

[4]  S. Eun,et al.  Utility of next generation sequencing in genetic diagnosis of early onset neuromuscular disorders , 2015, Journal of Medical Genetics.

[5]  Michael Bach,et al.  ISCEV Standard for full-field clinical electroretinography (2015 update) , 2014, Documenta Ophthalmologica.

[6]  Judith A. Blake,et al.  The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease , 2014, Nucleic Acids Res..

[7]  Véronique Geoffroy,et al.  Efficient strategy for the molecular diagnosis of intellectual disability using targeted high-throughput sequencing , 2014, Journal of Medical Genetics.

[8]  B. Fournier,et al.  Isolated dentinogenesis imperfecta and dentin dysplasia: revision of the classification , 2014, European Journal of Human Genetics.

[9]  M. Vikkula,et al.  Pathognomonic oral profile of Enamel Renal Syndrome (ERS) caused by recessive FAM20A mutations , 2014, Orphanet Journal of Rare Diseases.

[10]  C. Inglehearn,et al.  Deletion of ameloblastin exon 6 is associated with amelogenesis imperfecta , 2014, Human molecular genetics.

[11]  M. Hurles,et al.  De novo loss-of-function mutations in SETD5, encoding a methyltransferase in a 3p25 microdeletion syndrome critical region, cause intellectual disability. , 2014, American journal of human genetics.

[12]  Valter Tucci,et al.  Dominant β-catenin mutations cause intellectual disability with recognizable syndromic features. , 2014, The Journal of clinical investigation.

[13]  Jana Marie Schwarz,et al.  MutationTaster2: mutation prediction for the deep-sequencing age , 2014, Nature Methods.

[14]  F. Seymen,et al.  STIM1 and SLC24A4 Are Critical for Enamel Maturation , 2014, Journal of dental research.

[15]  F. Seymen,et al.  Exonal Deletion of SLC24A4 Causes Hypomaturation Amelogenesis Imperfecta , 2014, Journal of dental research.

[16]  S. Lee,et al.  Novel LAMB3 mutations cause non-syndromic amelogenesis imperfecta with variable expressivity , 2014, Clinical genetics.

[17]  N. Dahl,et al.  WNT10A mutations account for ¼ of population‐based isolated oligodontia and show phenotypic correlations , 2014, American journal of medical genetics. Part A.

[18]  C. Inglehearn,et al.  A missense mutation in ITGB6 causes pitted hypomineralized amelogenesis imperfecta , 2013, Human molecular genetics.

[19]  J. Penn,et al.  Targeted exome sequencing for mitochondrial disorders reveals high genetic heterogeneity , 2013, BMC Medical Genetics.

[20]  P. Jagodziński,et al.  Nucleotide variants of genes encoding components of the Wnt signalling pathway and the risk of non‐syndromic tooth agenesis , 2013, Clinical genetics.

[21]  Lars Feuk,et al.  The Database of Genomic Variants: a curated collection of structural variation in the human genome , 2013, Nucleic Acids Res..

[22]  Mauricio O. Carneiro,et al.  From FastQ Data to High‐Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline , 2013, Current protocols in bioinformatics.

[23]  C. Inglehearn,et al.  Whole-exome sequencing, without prior linkage, identifies a mutation in LAMB3 as a cause of dominant hypoplastic amelogenesis imperfecta , 2013, European Journal of Human Genetics.

[24]  A. Bloch-Zupan,et al.  Homozygous and Compound Heterozygous MMP20 Mutations in Amelogenesis Imperfecta , 2013, Journal of dental research.

[25]  P. Calvas,et al.  Mutations in WNT10A are frequently involved in oligodontia associated with minor signs of ectodermal dysplasia , 2013, American journal of medical genetics. Part A.

[26]  P. Dollé,et al.  Molars and incisors: show your microarray IDs , 2013, BMC Research Notes.

[27]  Heidi L. Rehm,et al.  Disease-targeted sequencing: a cornerstone in the clinic , 2013, Nature Reviews Genetics.

[28]  P. Sharpe,et al.  Diseases of the tooth: the genetic and molecular basis of inherited anomalies affecting the dentition , 2013, Wiley interdisciplinary reviews. Developmental biology.

[29]  J. Dixon,et al.  Secreted protein kinases. , 2013, Trends in biochemical sciences.

[30]  Sue Povey,et al.  Nephrocalcinosis (Enamel Renal Syndrome) Caused by Autosomal Recessive FAM20A Mutations , 2013, Nephron Physiology.

[31]  Colin A. Johnson,et al.  Identification of mutations in SLC24A4, encoding a potassium-dependent sodium/calcium exchanger, as a cause of amelogenesis imperfecta. , 2013, American journal of human genetics.

[32]  Paul Harmatz,et al.  Diagnosing mucopolysaccharidosis IVA , 2013, Journal of Inherited Metabolic Disease.

[33]  B. V. van Bon,et al.  Diagnostic exome sequencing in persons with severe intellectual disability. , 2012, The New England journal of medicine.

[34]  M. Jonkman,et al.  Enamel defects in carriers of a novel LAMA3 mutation underlying epidermolysis bullosa. , 2012, Acta dermato-venereologica.

[35]  Kenny Q. Ye,et al.  An integrated map of genetic variation from 1,092 human genomes , 2012, Nature.

[36]  Colin A. Johnson,et al.  Mutations in C4orf26, encoding a peptide with in vitro hydroxyapatite crystal nucleation and growth activity, cause amelogenesis imperfecta. , 2012, American journal of human genetics.

[37]  Véronique Geoffroy,et al.  Targeted high-throughput sequencing for diagnosis of genetically heterogeneous diseases: efficient mutation detection in Bardet-Biedl and Alström Syndromes , 2012, Journal of Medical Genetics.

[38]  D. Lindhout,et al.  Mutations in WNT10A are present in more than half of isolated hypodontia cases , 2012, Journal of Medical Genetics.

[39]  Zlatko Trajanoski,et al.  Mutations in ROGDI Cause Kohlschütter-Tönz Syndrome. , 2012, American journal of human genetics.

[40]  A. Bloch-Zupan,et al.  Dento/Oro/Craniofacial Anomalies and Genetics , 2012 .

[41]  Pablo Cingolani,et al.  © 2012 Landes Bioscience. Do not distribute. , 2022 .

[42]  Su Jeong Song,et al.  Novel FAM20A mutations in hypoplastic amelogenesis imperfecta , 2012, Human mutation.

[43]  Jung‐Wook Kim,et al.  Target gene analyses of 39 amelogenesis imperfecta kindreds. , 2011, European journal of oral sciences.

[44]  T. Diekwisch,et al.  Structure and function of ameloblastin as an extracellular matrix protein: adhesion, calcium binding, and CD63 interaction in human and mouse. , 2011, European journal of oral sciences.

[45]  N. Dahl,et al.  Isolated oligodontia associated with mutations in EDARADD, AXIN2, MSX1, and PAX9 genes , 2011, American journal of medical genetics. Part A.

[46]  J. T. Wright,et al.  Amelogenesis Imperfecta: Genotype-Phenotype Studies in 71 Families , 2011, Cells Tissues Organs.

[47]  Jeffrey C Murray,et al.  Whole-Exome sequencing identifies FAM20A mutations as a cause of amelogenesis imperfecta and gingival hyperplasia syndrome. , 2011, American journal of human genetics.

[48]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[49]  A. Smahi,et al.  Only four genes (EDA1, EDAR, EDARADD, and WNT10A) account for 90% of hypohidrotic/anhidrotic ectodermal dysplasia cases , 2011, Human mutation.

[50]  Adam P. DeLuca,et al.  Comprehensive genetic testing for hereditary hearing loss using massively parallel sequencing , 2010, Proceedings of the National Academy of Sciences.

[51]  Monte Westerfield,et al.  ZFIN: enhancements and updates to the zebrafish model organism database , 2010, Nucleic Acids Res..

[52]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[53]  Emily H Turner,et al.  Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome , 2010, Nature Genetics.

[54]  Y. Meng,et al.  Mucopolysaccharidosis IVA mutations in Chinese patients: 16 novel mutations , 2010, Journal of Human Genetics.

[55]  M. Chiquet,et al.  Identification of a fibronectin interaction site in the extracellular matrix protein ameloblastin. , 2010, Experimental cell research.

[56]  P. Bork,et al.  A method and server for predicting damaging missense mutations , 2010, Nature Methods.

[57]  Richard Durbin,et al.  Fast and accurate long-read alignment with Burrows–Wheeler transform , 2010, Bioinform..

[58]  Hussain Jafri,et al.  Mutations in the Beta Propeller WDR72 Cause Autosomal-Recessive Hypomaturation Amelogenesis Imperfecta , 2009, American journal of human genetics.

[59]  S. Sel,et al.  WNT10A mutations are a frequent cause of a broad spectrum of ectodermal dysplasias with sex-biased manifestation pattern in heterozygotes. , 2009, American journal of human genetics.

[60]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[61]  A. Noor,et al.  Oligodontia is caused by mutation in LTBP3, the gene encoding latent TGF-beta binding protein 3. , 2009, American journal of human genetics.

[62]  C. Béroud,et al.  Human Splicing Finder: an online bioinformatics tool to predict splicing signals , 2009, Nucleic acids research.

[63]  T. Hart,et al.  Phenotypic Variation in FAM83H-associated Amelogenesis Imperfecta , 2009, Journal of dental research.

[64]  Ian M. Carr,et al.  Mutations in CNNM4 Cause Jalili Syndrome, Consisting of Autosomal-Recessive Cone-Rod Dystrophy and Amelogenesis Imperfecta , 2009, American journal of human genetics.

[65]  E. Chouery,et al.  Mutations in CNNM4 cause recessive cone-rod dystrophy with amelogenesis imperfecta. , 2009, American journal of human genetics.

[66]  J. T. Wright,et al.  A comprehensive analysis of normal variation and disease‐causing mutations in the human DSPP gene , 2008, Human mutation.

[67]  Jung‐Wook Kim,et al.  Mutational spectrum of FAM83H: the C‐terminal portion is required for tooth enamel calcification , 2008, Human mutation.

[68]  W. Grody,et al.  ACMG recommendations for standards for interpretation and reporting of sequence variations: Revisions 2007 , 2008, Genetics in Medicine.

[69]  Z. Lee,et al.  FAM83H mutations in families with autosomal-dominant hypocalcified amelogenesis imperfecta. , 2008, American journal of human genetics.

[70]  L. Game,et al.  SNP genome scanning localizes oto-dental syndrome to chromosome 11q13 and microdeletions at this locus implicate FGF3 in dental and inner-ear disease and FADD in ocular coloboma. , 2007, Human molecular genetics.

[71]  J. Uitto,et al.  Retrospective diagnosis of fatal BP180-deficient non-Herlitz junctional epidermolysis bullosa suggested by immunofluorescence (IF) antigen-mapping of parental carriers bearing enamel defects. , 2007, The Journal of investigative dermatology.

[72]  G. Jansen,et al.  Localized and generalized forms of blistering in junctional epidermolysis bullosa due to COL17A1 mutations in the Netherlands , 2007, The British journal of dermatology.

[73]  H. Sekiguchi,et al.  A Novel Missense Mutation (p.P52R) in Amelogenin Gene Causing X-linked Amelogenesis Imperfecta , 2007, Journal of dental research.

[74]  P. Lukinmaa,et al.  Developmental dental toxicity of dioxin and related compounds--a review. , 2006, International dental journal.

[75]  Lin He,et al.  A novel missense mutation of the EDA gene in a Mongolian family with congenital hypodontia , 2006, Journal of Human Genetics.

[76]  M. Escamilla,et al.  DLX3 mutation associated with autosomal dominant amelogenesis imperfecta with taurodontism , 2005, American journal of medical genetics. Part A.

[77]  T. Hart,et al.  MMP-20 mutation in autosomal recessive pigmented hypomaturation amelogenesis imperfecta , 2005, Journal of Medical Genetics.

[78]  J. T. Wright,et al.  Mutation in kallikrein 4 causes autosomal recessive hypomaturation amelogenesis imperfecta , 2004, Journal of Medical Genetics.

[79]  I. Thesleff,et al.  Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. , 2004, American journal of human genetics.

[80]  G. Koch Prevalence of enamel mineralisation disturbances in an area with 1-1.2 ppm F in drinking water. Review and summary of a report published in Sweden in 1981. , 2003, European journal of paediatric dentistry.

[81]  Jinhua Wang,et al.  ESEfinder: a web resource to identify exonic splicing enhancers , 2003, Nucleic Acids Res..

[82]  Christopher B. Burge,et al.  Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals , 2003, RECOMB '03.

[83]  B. Nyvad,et al.  Dental findings in three siblings with Morquio's syndrome. , 2001, International journal of paediatric dentistry.

[84]  R. Davies,et al.  Mutation of the gene encoding the enamel-specific protein, enamelin, causes autosomal-dominant amelogenesis imperfecta. , 2001, Human molecular genetics.

[85]  J. Seidman,et al.  A nonsense mutation in MSX1 causes Witkop syndrome. , 2001, American journal of human genetics.

[86]  M. Pfaffl,et al.  A new mathematical model for relative quantification in real-time RT-PCR. , 2001, Nucleic acids research.

[87]  S. Salzberg,et al.  GeneSplicer: a new computational method for splice site prediction. , 2001, Nucleic acids research.

[88]  Zhu Chen,et al.  Dentinogenesis imperfecta 1 with or without progressive hearing loss is associated with distinct mutations in DSPP , 2001, Nature Genetics.

[89]  L. Bruckner-Tuderman,et al.  Digenic junctional epidermolysis bullosa: mutations in COL17A1 and LAMB3 genes. , 1999, American journal of human genetics.

[90]  J. Zonana,et al.  Mutations in the human homologue of mouse dl cause autosomal recessive and dominant hypohidrotic ectodermal dysplasia , 1999, Nature Genetics.

[91]  J. Zonana,et al.  Identification of a new splice form of the EDA1 gene permits detection of nearly all X-linked hypohidrotic ectodermal dysplasia mutations. , 1998, American journal of human genetics.

[92]  J. Uitto,et al.  Premature termination codons are present on both alleles of the bullous pemphigoid antigen 2/type XVII collagen gene in five Austrian families with generalized atrophic benign epidermolysis bullosa. , 1997, The Journal of investigative dermatology.

[93]  David Haussler,et al.  Improved splice site detection in Genie , 1997, RECOMB '97.

[94]  J. Seidman,et al.  A human MSX1 homeodomain missense mutation causes selective tooth agenesis , 1996, Nature Genetics.

[95]  J. R. McMillan,et al.  Compound heterozygosity for a dominant glycine substitution and a recessive internal duplication mutation in the type XVII collagen gene results in junctional epidermolysis bullosa and abnormal dentition. , 1996, The American journal of pathology.

[96]  J. Uitto,et al.  Mutational hotspots in the LAMB3 gene in the lethal (Herlitz) type of junctional epidermolysis bullosa. , 1996, Human molecular genetics.

[97]  J. Uitto,et al.  Altered laminin 5 expression due to mutations in the gene encoding the beta 3 chain (LAMB3) in generalized atrophic benign epidermolysis bullosa. , 1995, The Journal of investigative dermatology.

[98]  Y. Suzuki,et al.  Mucopolysaccharidosis IVA: screening and identification of mutations of the N-acetylgalactosamine-6-sulfate sulfatase gene. , 1995, Human molecular genetics.

[99]  U. Landegren,et al.  A deletion in the amelogenin gene (AMG) causes X-linked amelogenesis imperfecta (AIH1). , 1991, Genomics.

[100]  K K Kidd,et al.  Haplotype of multiple polymorphisms resolved by enzymatic amplification of single DNA molecules. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[101]  D. Gardner The dental manifestations of the Morquio syndrome (mucopolysaccharidosis type IV). A diagnostic aid. , 1975, American journal of diseases of children.

[102]  C. Salinas,et al.  Oral findings in the Morquio syndrome (mucopolysaccharidosis IV). , 1975, Oral surgery, oral medicine, and oral pathology.

[103]  F. Seymen,et al.  STIM 1 and SLC 24 A 4 Are Critical for Enamel Maturation CliniCAl inVESTiGATiOnS , 2014 .

[104]  Salima El-Chehadeh,et al.  Ef fi cient strategy for the molecular diagnosis of intellectual disability using targeted high-throughput sequencing , 2014 .

[105]  T. Wieland,et al.  De novo mutations in beta-catenin (CTNNB1) appear to be a frequent cause of intellectual disability: expanding the mutational and clinical spectrum , 2014, Human Genetics.

[106]  K. White,et al.  Spondyloepiphyseal dysplasias and bilateral legg-calvé-perthes disease: diagnostic considerations for mucopolysaccharidoses. , 2013, JIMD reports.

[107]  A. Bloch-Zupan,et al.  Comprar Dento/Oro/Craniofacial Anomalies And Genetics | Agnes Bloch-Zupan | 9780124160385 | Elsevier Internacional , 2012 .

[108]  I. Krantz,et al.  Gorlin's Syndromes of the Head and Neck , 2010 .

[109]  S. Henikoff,et al.  Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm , 2009, Nature Protocols.

[110]  R. Atit,et al.  Wnt/beta-catenin signaling directs multiple stages of tooth morphogenesis. , 2008, Developmental biology.

[111]  R. Atit,et al.  Wnt/β-catenin signaling directs multiple stages of tooth morphogenesis , 2008 .

[112]  A. Kuijpers-Jagtman,et al.  A meta-analysis of the prevalence of dental agenesis of permanent teeth , 2004, Community dentistry and oral epidemiology.

[113]  J. Uitto,et al.  Laminin 5 mutations in junctional epidermolysis bullosa: molecular basis of Herlitz vs non-Herlitz phenotypes , 2001, Human Genetics.

[114]  P. Patel,et al.  Mutation of PAX9 is associated with oligodontia , 2000, Nature Genetics.

[115]  A. Brook,et al.  The aetiology of developmental defects of enamel: a prevalence and family study in East London, U.K. , 1998, Connective tissue research.

[116]  小川達也 Mucopolysaccharidosis IVA: Screening and identification of mutations of the N-acetylgalactosamine-6-sulfate sulfatase gene , 1994 .

[117]  A H Brook,et al.  A unifying aetiological explanation for anomalies of human tooth number and size. , 1984, Archives of oral biology.

[118]  J. Zizka,et al.  [Amelogenesis imperfecta]. , 1976, Sbornik vedeckych praci Lekarske fakulty Karlovy univerzity v Hradci Kralove. Supplementum.

[119]  R. Amann,et al.  Predictive Identification of Exonic Splicing Enhancers in Human Genes , 2022 .