Application of the Bingham distribution function in paleomagnetic studies

Fisherian statistical parameters are frequently published for paleomagnetic data that form elongate directional distributions, despite the fact that they are strictly applicable to circularly symmetric distributions. Thus the Bingham statistical parameters provide better approximation to elongate paleomagnetic data sets. Because the Bingham parameters also pertain to directions dispersed along a great circle, they supply a statistical basis for describing the distribution of axes perpendicular to great circles intersecting at a common point, a problem that arises in the analysis of multicomponent magnetization, in the application of the Hargraves' correction technique, and in intersecting lunes. Application of the Bingham density function to paleomagnetic poles from Tertiary lava flows in Iceland reveals temporal fluctuations in the eccentricity of the data. Use of the Bingham density function in the analysis of intersecting great circles is illustrated by application to data from a lightning strike remagnetized basalt in northern Arizona.

[1]  S. Cande A Palaeomagnetic Pole from Late Cretaceous Marine Magnetic Anomalies in the Pacific , 1976 .

[2]  A. Cox Angular Dispersion Due to Random Magnetization , 1964 .

[3]  F. Perrin,et al.  Étude mathématique du mouvement brownien de rotation , 1928 .

[4]  J. Piper,et al.  Palaeomagnetic Studies in the British Caledonides—IV Lower Devonian Lavas of the Strathmore Region, Scotland , 1973 .

[5]  C. Helsley,et al.  Paleomagnetic and rock‐magnetic studies of the Permian Cutler and Elephant Canyon Formations in Utah , 1972 .

[6]  N. Watkins,et al.  Magnetostratigraphy of eastern Iceland , 1977 .

[7]  D. Burt,et al.  PALEOMAGNETISM OF THE ALLARD LAKE ANORTHOSITE SUITE , 1967 .

[8]  R. King THE REMANENT MAGNETISM OF ARTIFICIALLY DEPOSITED SEDIMENTS , 1955 .

[9]  C. Helsley,et al.  Shape analysis of paleosecular variation data , 1974 .

[10]  K. Creer A statistical enquiry into the partial remagnetization of folded old red sandstone rocks , 1962 .

[11]  A. Brock An Experimental Study of Palaeosecular Variation , 1971 .

[12]  H. Halls The use of converging remagnetization circles in palaeomagnetism , 1978 .

[13]  A. Cox Latitude Dependence of the Angular Dispersion of the Geomagnetic Field , 1970 .

[14]  G. S. Watson,et al.  More significance tests on the sphere , 1960 .

[15]  K. Creer The dispersion of the geomagnetic field due to secular variation and its determination for remote times from paleomagnetic data , 1962 .

[16]  Christopher Bingham An Antipodally Symmetric Distribution on the Sphere , 1974 .

[17]  G. S. Watson,et al.  Equatorial distributions on a sphere , 1965 .

[18]  K. Mardia Statistics of Directional Data , 1972 .

[19]  E. Irving,et al.  A statistical model of the geomagnetic field , 1964 .

[20]  G. S. Watson,et al.  STATISTICAL METHODS IN ROCK MAGNETISM , 1957 .

[21]  Paul H. Roberts,et al.  Random walk on a sphere and on a Riemannian manifold , 1960, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[22]  D. Engebretson,et al.  On the shape of directional data sets , 1978 .

[23]  P. Williamson,et al.  Iterative method of isolating primary and secondary components of remanent magnetization illustrated by using the Upper Devonian Catombal Group of Australia , 1976 .

[24]  K. Creer IV. The natural remanent magnetization of certain stable rocks from Great Britain , 1957, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[25]  G. S. Watson,et al.  The Statistics of Orientation Data , 1966, The Journal of Geology.

[26]  K. Hoffman,et al.  Separation of multi-component NRM: A general method , 1978 .

[27]  H. Halls A Least‐Squares Method to find a Remanence Direction from Converging Remagnetization Circles , 1976 .

[28]  J. Piper,et al.  Palaeomagnetic Studies in the British Caledonides—II The Younger Gabbros of Aberdeenshire, Scotland , 1973 .

[29]  J. Roy DÉSAIMANTATION Thermique et Analyse Statistique des Directions de SÉDIMENTS CARBONIFÈRES et Permiens de L'est du Canada , 1966 .

[30]  M. Beck Paleomagnetism of Upper Triassic diabase from southeastern Pennsylvania: Further results , 1972 .

[31]  R. Hargraves Magnetic anisotropy and remanent magnetism in hemo‐ilmenite from ore deposits at Allard Lake, Quebec , 1959 .

[32]  N. Watkins,et al.  Comparison of the offset dipole and zonal nondipole geomagnetic field models using Icelandic paleomagnetic data , 1979 .