Characterization of optimal risk allocations for convex risk functionals

In this paper we consider the problem of optimal risk allocation or risk exchange with respect to convex risk functionals, which not necessarily are monotone or cash invariant. General existence and characterization results are given for optimal risk allocations minimizing the total risk as well as for Pareto optimal allocations. We establish a general uniqueness result for optimal allocations. As particular consequence we obtain in case of cash invariant, strictly convex risk functionals the uniqueness of Pareto optimal allocations up to additive constants. In the final part some tools are developed useful for the verification of the basic intersection condition made in the theorems which are applied in several examples.

[1]  Ludger Rüschendorf,et al.  On optimal allocation of risk vectors , 2010 .

[2]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[3]  Alexander Shapiro,et al.  Optimization of Convex Risk Functions , 2006, Math. Oper. Res..

[4]  William S. Jewell,et al.  Optimal Risk Exchanges , 1979, ASTIN Bulletin.

[5]  J. Aubin Optima and Equilibria: An Introduction to Nonlinear Analysis , 1993 .

[6]  Leonard D. Berkovitz,et al.  Review: V. Barbu and Th. Precupanu, Convexity and optimization in Banach spaces , 1980 .

[7]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[8]  F. Delbaen,et al.  On the extension of the Namioka-Klee theorem and on the Fatou property for Risk Measures , 2009 .

[9]  E. Jouini,et al.  Law Invariant Risk Measures Have the Fatou Property , 2005 .

[10]  Ludger Rüschendorf,et al.  On convex risk measures on Lp-spaces , 2009, Math. Methods Oper. Res..

[11]  Burgert Christian,et al.  On the optimal risk allocation problem , 2006 .

[12]  Isaac Meilijson,et al.  Co-monotone allocations, Bickel-Lehmann dispersion and the Arrow-Pratt measure of risk aversion , 1994, Ann. Oper. Res..

[13]  D. Heath,et al.  Pareto Equilibria with coherent measures of risk , 2004 .

[14]  E. Jouini,et al.  OPTIMAL RISK SHARING FOR LAW INVARIANT MONETARY UTILITY FUNCTIONS , 2008 .

[15]  Jan Dhaene,et al.  Modern Actuarial Risk Theory , 2001 .

[16]  Damir Filipovic,et al.  Optimal capital and risk allocations for law- and cash-invariant convex functions , 2008, Finance Stochastics.

[17]  Hans U. Gerber,et al.  An introduction to mathematical risk theory , 1982 .

[18]  Beatrice Acciaio Optimal risk sharing with non-monotone monetary functionals , 2007, Finance Stochastics.

[19]  R. Rockafellar Conjugate Duality and Optimization , 1987 .

[20]  M. Rao,et al.  Theory of Orlicz spaces , 1991 .

[21]  K. Borch Equilibrium in a Reinsurance Market , 1962 .

[22]  V. Barbu,et al.  Convexity and optimization in banach spaces , 1972 .

[23]  Ludger Rüschendorf,et al.  Allocation of risks and equilibrium in markets with finitely many traders , 2008 .

[24]  H. Gerber,et al.  On convex principles of premium calculation , 1985 .

[25]  A. Balbás,et al.  Optimal reinsurance with general risk measures , 2009 .

[26]  Rüschendorf Ludger,et al.  Law invariant convex risk measures for portfolio vectors , 2006 .

[27]  Damir Filipović,et al.  Monotone and cash-invariant convex functions and hulls , 2007 .

[28]  Pauline Barrieu,et al.  Inf-convolution of risk measures and optimal risk transfer , 2005, Finance Stochastics.

[29]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[30]  Giacomo Scandolo,et al.  General Pareto Optimal Allocations and Applications to Multi-Period Risks1 , 2008, ASTIN Bulletin.

[31]  General Pareto Optimal Allocations and Applications to Multi-period Risks , 2008 .

[32]  Gert Wanka,et al.  A weaker regularity condition for subdifferential calculus and Fenchel duality in infinite dimensional spaces , 2006 .

[33]  N. El Karoui,et al.  Pricing, Hedging and Optimally Designing Derivatives via Minimization of Risk Measures , 2007, 0708.0948.

[34]  Vladimir Tikhomirov,et al.  Theorie der Extremalaufgaben , 1979 .

[35]  V. Jeyakumar,et al.  A Dual Condition for the Convex Subdifferential Sum Formula with Applications , 2022 .