Infinitely many solutions for a class of p(x)-Laplacian equations in R N

In this paper, we study the existence of infinitely many solutions for a class of p(x)-Laplacian equations in R N , where the nonlinearity is sublinear. The main

[1]  Jos'e L. P. Barreiro,et al.  Existence and multiplicity of solutions for a p(x)-Laplacian equation with critical growth , 2013 .

[2]  Gongbao Li,et al.  The existence of a nontrivial solution to p‐Laplacian equations in RN with supercritical growth , 2013 .

[3]  G. Bonanno,et al.  Existence results of infinitely many solutions for p(x)-Laplacian elliptic Dirichlet problems , 2012 .

[4]  Giuseppina D'Aguì,et al.  Infinitely many solutions to elliptic problems with variable exponent and nonhomogeneous Neumann conditions , 2012 .

[5]  Juntao Sun,et al.  Infinitely many solutions for a class of sublinear Schrödinger–Maxwell equations , 2012 .

[6]  Qingye Zhang,et al.  Multiple solutions for a class of sublinear Schrödinger equations , 2012 .

[7]  Xiaoping Xue,et al.  Infinitely many solutions for a differential inclusion problem in $${\mathbb{R}^N}$$ involving p(x)-Laplacian and oscillatory terms , 2012 .

[8]  A. Chinní,et al.  Multiple solutions for a Neumann-type differential inclusion problem involving the p(.)-Laplacian , 2011 .

[9]  P. Hästö,et al.  Lebesgue and Sobolev Spaces with Variable Exponents , 2011 .

[10]  G. Bonanno,et al.  Discontinuous elliptic problems involving the p(x)‐Laplacian , 2011 .

[11]  Chun-gen Liu,et al.  Existence of nontrivial solutions for p-Laplacian equations in RN , 2010, 1011.5284.

[12]  Chun-gen Liu,et al.  Existence of Nontrivial Solutions for p-Laplacian Equations in {R}^{N} , 2010 .

[13]  F. Cammaroto,et al.  Multiple solutions for a Neumann problem involving the p(x)-Laplacian , 2009 .

[14]  Guowei Dai Infinitely many solutions for a p(x)-Laplacian equation in RN☆ , 2009 .

[15]  Yongqiang Fu,et al.  A multiplicity result for p(x)-Laplacian problem in RN , 2009 .

[16]  Yunmei Chen,et al.  Variable Exponent, Linear Growth Functionals in Image Restoration , 2006, SIAM J. Appl. Math..

[17]  Sergey Shmarev,et al.  A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions , 2005 .

[18]  Xianling Fan,et al.  Existence and multiplicity of solutions for p(x)-Laplacian equations in RN , 2004 .

[19]  Qihu Zhang,et al.  Existence of solutions for p(x) -Laplacian dirichlet problem , 2003 .

[20]  Xianling Fan,et al.  Sobolev Embedding Theorems for Spaces Wk, p(x)(Ω) , 2001 .

[21]  Wenming Zou,et al.  Variant fountain theorems and their applications , 2001 .

[22]  Thomas Bartsch,et al.  Existence and multiplicity results for some superlinear elliptic problems on RN , 1995 .

[23]  V. Zhikov,et al.  AVERAGING OF FUNCTIONALS OF THE CALCULUS OF VARIATIONS AND ELASTICITY THEORY , 1987 .

[24]  Ge Bin,et al.  Existence and multiplicity of solutions for p(x)-Laplacian equations in , 2014 .

[25]  A. Chinní,et al.  EXISTENCE OF SOLUTIONS FOR A NEUMANN PROBLEM INVOLVING THE p(x)-LAPLACIAN , 2013 .

[26]  G. Bonanno,et al.  Multiple solutions for elliptic problems involving the p(x)-Laplacian , 2011 .

[27]  Shibo Liu On ground states of superlinear p-Laplacian equations in RN , 2010 .

[28]  Jiří Rákosník,et al.  Sobolev embeddings with variable exponent , 2000 .

[29]  M. Ruzicka,et al.  Electrorheological Fluids: Modeling and Mathematical Theory , 2000 .

[30]  Thomas Bartsch,et al.  EXISTENCE AND MULTIPLICITY RESULTS FOR SOIVIE SUPERLINEAR ELLIPTIC PROBLEMS ON R N , 1995 .