Validation of refractivity profiles derived from GRAS raw-sampling data

Abstract. Results from GRAS (GNSS Receiver for Atmospheric Sounding) RO (Radio Occultation) data recorded in RS (Raw Sampling) mode processed at the GFZ (German Research Centre for Geoscience) Potsdam are presented. The experimental processing software POCS-X includes FSI (Full Spectrum Inversion) in order to cope with multi-path regions and enables in connection with RS data to retrieve atmospheric refractivity profiles down to the Earths surface. Radio occultation events observed between 30 September and 30 October 2007 are processed and the retrievals are validated against co-located ECMWF (European Centre for Medium-Range Weather Forecasts) profiles. The intercomparison indicates good quality of the retrieved profiles. In the altitude range 8 to 25 km the standard deviation is below 1 %. The mean deviation in this altitude range tends to be negative. At 30 km the negative bias reaches about −0.4 %. Below 8 km the standard deviation increases, reaching 2.5 % at 2 km. Below 2 km the mean deviation tends to be negative, reaching −1.9 % close to the ground. The negative bias mainly stems from the tropical lower troposphere; there, the negative bias reaches −3 %. The tropospheric penetration depth obtained from RS data shows a vast improvement compared to the tropospheric penetration depth typically obtained from CL (Closed Loop) data; 50 % of all retrieved profiles reach 720 m.

[1]  A. Hedin Extension of the MSIS Thermosphere Model into the middle and lower atmosphere , 1991 .

[2]  S. B. Healy Smoothing radio occultation bending angles above 40 km , 2001 .

[3]  G. B. Larsen,et al.  Processing of GRAS/METOP radio occultation data recorded in closed-loop and raw-sampling modes , 2011 .

[4]  Steven Businger,et al.  GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water , 1994 .

[5]  G. Beyerle Scientific Report 05-09 Simulating GPS radio occultation events , 2022 .

[6]  Christian Rocken,et al.  The COSMIC/FORMOSAT-3 Mission: Early Results , 2008 .

[7]  Grzegorz Michalak,et al.  GPS radio occultation: results from CHAMP, GRACE and FORMOSAT-3/COSMIC. , 2009 .

[8]  W. Bertiger,et al.  A technical description of atmospheric sounding by GPS occultation , 2002 .

[9]  Markus Rothacher,et al.  A data archive of GPS navigation messages , 2009 .

[10]  M. E. Gorbunov,et al.  Canonical transform method for processing radio occultation data in the lower troposphere , 2002 .

[11]  Rolf König,et al.  The Radio Occultation Experiment aboard CHAMP: Operational Data Analysis and Validation of Vertical Atmospheric Profiles , 2004 .

[12]  X. Zou,et al.  Analysis and validation of GPS/MET data in the neutral atmosphere , 1997 .

[13]  Rolf König,et al.  Atmosphere sounding by GPS radio occultation: First results from CHAMP , 2001 .

[14]  M. Rothacher,et al.  Observations and simulations of receiver-induced refractivity biases in GPS radio occultation , 2005, physics/0502052.

[15]  Sergey Sokolovskiy,et al.  Tracking tropospheric radio occultation signals from low Earth orbit , 2001 .

[16]  Stig Syndergaard,et al.  Processing and validation of refractivity from GRAS radio occultation data , 2011 .

[17]  M. Gorbunov,et al.  COSMIC Radio Occultation Processing: Cross-Center Comparison and Validation , 2011 .

[18]  Grzegorz Michalak,et al.  First results from the GPS atmosphere sounding experiment TOR aboard the TerraSAR-X satellite , 2010 .

[19]  S. Sokolovskiy,et al.  On the uncertainty of radio occultation inversions in the lower troposphere , 2010 .

[20]  Douglas Hunt,et al.  Postprocessing of L1 GPS radio occultation signals recorded in open‐loop mode , 2009 .

[21]  Anders Berg,et al.  Metop-GRAS in-orbit instrument performance , 2009 .

[22]  J. Schofield,et al.  Observing Earth's atmosphere with radio occultation measurements using the Global Positioning System , 1997 .

[23]  H. H. Benzon,et al.  Full Spectrum Inversion of radio occultation signals , 2003 .

[24]  J. Wickert,et al.  GPS radio occultation with GRACE: Atmospheric profiling utilizing the zero difference technique , 2004, physics/0409032.

[25]  A. von Engeln,et al.  Validation of operational GRAS radio occultation data , 2009 .

[26]  Stephen S. Leroy,et al.  Application of Wigner distribution function for analysis of radio occultations , 2010 .

[27]  A. Kliore,et al.  The neutral atmosphere of Venus as studied with the Mariner V radio occultation experiments , 1971 .

[28]  J. Wickert,et al.  Atmospheric sounding by global navigation satellite system radio occultation: An analysis of the negative refractivity bias using CHAMP observations , 2004 .

[29]  S. Sokolovskiy Effect of superrefraction on inversions of radio occultation signals in the lower troposphere , 2003 .

[30]  Anthony J. Mannucci,et al.  Lower troposphere refractivity bias in GPS occultation retrievals , 2003 .