Explicit lower bounds for Stokes eigenvalue problems by using nonconforming finite elements

An algorithm is proposed to give explicit lower bounds of the Stokes eigenvalues by utilizing two nonconforming finite element methods: Crouzeix–Raviart (CR) element and enriched Crouzeix–Raviart (ECR) element. Compared with the existing literatures which give lower eigenvalue bounds under the asymptotic condition that the mesh size is “small enough”, the proposed algorithm in this paper drops the asymptotic condition and provide explicit lower bounds even for a rough mesh. Numerical experiments are also performed to validate the theoretical results.

[1]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[2]  B. Mercier,et al.  Eigenvalue approximation by mixed and hybrid methods , 1981 .

[3]  Xuefeng Liu A framework of verified eigenvalue bounds for self-adjoint differential operators , 2015, Appl. Math. Comput..

[4]  E. Leriche,et al.  Stokes eigenmodes in square domain and the stream function-vorticity correlation , 2004 .

[5]  Nobito Yamamoto,et al.  A posteriori and constructive a priori error bounds for finite element solutions of the Stokes equations , 1998 .

[6]  G. Karniadakis,et al.  Generalized Stokes eigenfunctions: a new trial basis for the solution of incompressible Navier-Stokes equations , 1994 .

[7]  Carlos E. Kenig,et al.  The Dirichlet problem for the Stokes system on Lipschitz domains , 1988 .

[8]  Lin Qun,et al.  Stokes Eigenvalue Approximations from Below with Nonconforming Mixed Finite Element Methods , 2010 .

[9]  Morten Hjorth-Jensen Eigenvalue Problems , 2021, Explorations in Numerical Analysis.

[10]  F. Chatelin Spectral approximation of linear operators , 2011 .

[11]  Shin'ichi Oishi,et al.  Verified computations to semilinear elliptic boundary value problems on arbitrary polygonal domains , 2013 .

[12]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[13]  Michael Plum,et al.  Explicit H2-estimates and pointwise bounds for solutions of second-order elliptic boundary value problems , 1992 .

[14]  Q. Lin,et al.  Superconvergence and extrapolation of non-conforming low order finite elements applied to the Poisson equation , 2005 .

[15]  Jun Hu,et al.  The Lower Bounds for Eigenvalues of Elliptic Operators --By Nonconforming Finite Element Methods , 2011, 1112.1145.

[16]  I. Babuska,et al.  Finite element-galerkin approximation of the eigenvalues and Eigenvectors of selfadjoint problems , 1989 .

[17]  Q. Lin,et al.  A multilevel correction method for Stokes eigenvalue problems and its applications , 2015 .

[18]  Qun Lin,et al.  Finite element methods : accuracy and improvement = 有限元方法 : 精度及其改善 , 2006 .

[19]  P. Lallemand,et al.  Stokes eigenmodes in cubic domain: their symmetry properties , 2014 .

[20]  Xie He-hu The Asymptotic Lower Bounds of Eigenvalue Problems by Nonconforming Finite Element Methods , 2012 .

[21]  R. Rannacher,et al.  Simple nonconforming quadrilateral Stokes element , 1992 .

[22]  Hehu Xie,et al.  Computing the lower and upper bounds of Laplace eigenvalue problem: by combining conforming and nonconforming finite element methods , 2011, 1109.5977.

[23]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[24]  Hehu Xie,et al.  A posterior error estimator and lower bound of a nonconforming finite element method , 2014, J. Comput. Appl. Math..

[25]  Mitsuhiro Nakao,et al.  A numerical verification method for the existence of weak solutions for nonlinear boundary value problems , 1992 .

[26]  A posterior error analysis for the nonconforming discretization of Stokes eigenvalue problem , 2014 .

[27]  Rolf Stenberg,et al.  A posteriori estimates for the Stokes eigenvalue problem , 2009 .