Ki67 index in intracranial ependymoma: a promising histopathological candidate biomarker

Aims:  The Ki67 tumour cell proliferation index is an independent prognostic factor in ependymoma patients. Essential prerequisites for validation of the Ki67 index as a histopathological biomarker are the reproducibility of this factor and its prognostic influence by different observers (proof of objective clinical and analytical performance). To this end, the aim was to analyse systematically inter‐ and intraobserver agreement and reproducibility of the prognostic impact of the Ki67 index in intracranial ependymoma.

[1]  D. Figarella-Branger,et al.  Prognostic factors in intracranial ependymomas in children. , 2000, Journal of neurosurgery.

[2]  Daniel J Brat,et al.  Proliferation (MIB-1 Expression) in Oligodendrogliomas: Assessment of Quantitative Methods and Prognostic Significance , 2006, Applied immunohistochemistry & molecular morphology : AIMM.

[3]  H. Budka,et al.  Ki-67 Immunolabeling Index Is an Accurate Predictor of Outcome in Patients With Intracranial Ependymoma , 2004, The American journal of surgical pathology.

[4]  F. K. Lam,et al.  Image analysis system for assessment of immunohistochemically stained proliferative marker (MIB-1) in oesophageal squamous cell carcinoma , 2003, Comput. Methods Programs Biomed..

[5]  F. Boop Long-term outcome in patients harboring intracranial ependymoma. , 2005, Journal of neurosurgery.

[6]  S. Love,et al.  Intracranial ependymomas: analysis of prognostic factors in a population-based series. , 1996, Pediatric neurosurgery.

[7]  A. Brandes,et al.  A multicenter study of the prognosis and treatment of adult brain ependymal tumors , 2004, Cancer.

[8]  D. Frappaz,et al.  Intracranial Ependymomas in Adult Patients: Analyses of Prognostic Factors , 2002, Journal of Neuro-Oncology.

[9]  R. Barnard,et al.  The classification of tumours of the central nervous system. , 1982, Neuropathology and applied neurobiology.

[10]  J. Buatti,et al.  Intracranial Ependymomas: An Analysis of Prognostic Factors and Patterns of Failure , 2002, American journal of clinical oncology.

[11]  Thomas Rüdiger,et al.  Inter‐laboratory and inter‐observer reproducibility of immunohistochemical assessment of the Ki‐67 labelling index in a large multi‐centre trial , 2002, The Journal of pathology.

[12]  Hung Chiang,et al.  Interobserver Reproducibility of MIB-1 Labeling Index in Astrocytic Tumors Using Different Counting Methods , 2003, Modern Pathology.

[13]  A. Bricolo,et al.  Prognostic Factors in Childhood Intracranial Ependymomas: The Role of Age and Tumor Location , 1998, Pediatric Neurosurgery.

[14]  M. Snuderl,et al.  Pediatric Intracranial Ependymomas: Prognostic Relevance of Histological, Immunohistochemical, and Flow Cytometric Factors , 2003, Modern Pathology.

[15]  M. J. van den Bent,et al.  Identification of relevant prognostic histopathologic features in 69 intracranial ependymomas, excluding myxopapillary ependymomas and subependymomas , 2006, Cancer.

[16]  Y. Matsuno,et al.  Quantitative immunohistochemical evaluation of MIB‐1 labeling index in adult soft‐tissue sarcomas by computer‐assisted image analysis , 2002, Pathology international.

[17]  D. Altman,et al.  Measuring agreement in method comparison studies , 1999, Statistical methods in medical research.

[18]  L. Lin,et al.  A concordance correlation coefficient to evaluate reproducibility. , 1989, Biometrics.

[19]  Ellison,et al.  Ki‐67 immunolabelling index is a prognostic indicator in childhood posterior fossa ependymomas , 1998, Neuropathology and applied neurobiology.

[20]  Steven Gutman,et al.  Opinion: The US Food and Drug Administration perspective on cancer biomarker development , 2006, Nature Reviews Cancer.

[21]  R. Prayson,et al.  Interobserver variability in determining MIB-1 labeling indices in oligodendrogliomas. , 2003, Annals of Diagnostic Pathology.

[22]  D. Schiffer,et al.  Prognosis of ependymoma , 1998, Child's Nervous System.

[23]  S. Raab,et al.  Interobserver variability associated with the MIB‐1 labeling index , 2001, Cancer.

[24]  G. Kayser,et al.  Theory and implementation of an electronic, automated measurement system for images obtained from immunohistochemically stained slides. , 2006, Analytical and quantitative cytology and histology.

[25]  R. Prayson The utility of MIB-1/Ki-67 immunostaining in the evaluation of central nervous system neoplasms. , 2005, Advances in anatomic pathology.

[26]  Webster K. Cavenee,et al.  WHO Classification of Tumours of the Central Nervous System. 4th Ed. , 2007 .

[27]  L. J. Rubinstein,et al.  Lack of histopathological correlation of malignant ependymomas with postoperative survival. , 1989, Journal of neurosurgery.

[28]  E. Steliarova-Foucher,et al.  Childhood central nervous system tumours--incidence and survival in Europe (1978-1997): report from Automated Childhood Cancer Information System project. , 2006, European journal of cancer.

[29]  P. Grigsby,et al.  Postoperative radiation therapy for grade II and III intracranial ependymoma. , 2005, International journal of radiation oncology, biology, physics.

[30]  T. Merchant,et al.  Influence of tumor grade on time to progression after irradiation for localized ependymoma in children. , 2002, International journal of radiation oncology, biology, physics.

[31]  R. Schröder,et al.  The clinical and prognostic relevance of grading in intracranial ependymomas. , 1997, British journal of neurosurgery.