Dispersion Properties of Explicit Finite Element Methods for Wave Propagation Modelling on Tetrahedral Meshes

We analyse the dispersion properties of two types of explicit finite element methods for modelling acoustic and elastic wave propagation on tetrahedral meshes, namely mass-lumped finite element methods and symmetric interior penalty discontinuous Galerkin methods, both combined with a suitable Lax–Wendroff time integration scheme. The dispersion properties are obtained semi-analytically using standard Fourier analysis. Based on the dispersion analysis, we give an indication of which method is the most efficient for a given accuracy, how many elements per wavelength are required for a given accuracy, and how sensitive the accuracy of the method is to poorly shaped elements.

[1]  Mrinal K. Sen,et al.  The interior penalty discontinuous Galerkin method for elastic wave propagation: grid dispersion , 2008 .

[2]  P. Lax,et al.  Difference schemes for hyperbolic equations with high order of accuracy , 1964 .

[3]  W. Mulder,et al.  New triangular mass-lumped finite elements of degree six for wave propagation , 2013 .

[4]  J. Hesthaven,et al.  On the constants in hp-finite element trace inverse inequalities , 2003 .

[5]  Wei Leng,et al.  High Order Mass-Lumping Finite Elements on Simplexes , 2017 .

[6]  Qing Huo Liu,et al.  Higher-Order Numerical Methods for Transient Wave Equations , 2003 .

[7]  Wim A. Mulder,et al.  Time-stepping stability of continuous and discontinuous finite-element methods for 3-D wave propagation , 2014 .

[8]  M. Y. Hussaini,et al.  An Analysis of the Discontinuous Galerkin Method for Wave Propagation Problems , 1999 .

[9]  W. Marsden I and J , 2012 .

[10]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[11]  Jaap J. W. van der Vegt,et al.  Sharp Penalty Term and Time Step Bounds for the Interior Penalty Discontinuous Galerkin Method for Linear Hyperbolic Problems , 2017, SIAM J. Sci. Comput..

[12]  Mrinal K. Sen,et al.  Stability of the high-order finite elements for acoustic or elastic wave propagation with high-order time stepping , 2010 .

[13]  Marcus J. Grote,et al.  Discontinuous Galerkin Finite Element Method for the Wave Equation , 2006, SIAM J. Numer. Anal..

[14]  Isaac Fried,et al.  Finite element mass matrix lumping by numerical integration with no convergence rate loss , 1975 .

[15]  Mrinal K. Sen,et al.  Grid dispersion and stability criteria of some common finite-element methods for acoustic and elastic wave equations , 2007 .

[16]  W. A. Mulder,et al.  Spurious modes in finite-element discretizations of the wave equation may not be all that bad , 1999 .

[17]  Mark Ainsworth,et al.  Dispersive and Dissipative Properties of Discontinuous Galerkin Finite Element Methods for the Second-Order Wave Equation , 2006, J. Sci. Comput..

[18]  M. A. Dablain,et al.  The application of high-order differencing to the scalar wave equation , 1986 .

[19]  Daniele Boffi,et al.  Finite element approximation of eigenvalue problems , 2010, Acta Numerica.

[20]  Bernardo Cockburn,et al.  The Runge-Kutta local projection discontinous Galerkin finite element method for conservation laws , 1990 .

[21]  V. Lisitsa Dispersion analysis of discontinuous Galerkin method on triangular mesh for elastic wave equation , 2016 .

[22]  Tao Xu,et al.  Higher-order triangular spectral element method with optimized cubature points for seismic wavefield modeling , 2017, J. Comput. Phys..

[23]  W. A. Mulder,et al.  A comparison between higher-order finite elements and finite differences for solving the wave equation , 1996 .

[24]  B. Rivière,et al.  Estimation of penalty parameters for symmetric interior penalty Galerkin methods , 2007 .

[25]  Martin Käser,et al.  Quantitative accuracy analysis of the discontinuous Galerkin method for seismic wave propagation , 2008 .

[26]  Jean E. Roberts,et al.  Higher Order Triangular Finite Elements with Mass Lumping for the Wave Equation , 2000, SIAM J. Numer. Anal..

[27]  Géza Seriani,et al.  Spectral element method for acoustic wave simulation in heterogeneous media , 1994 .

[28]  Khosro Shahbazi,et al.  Short Note: An explicit expression for the penalty parameter of the interior penalty method , 2005 .

[29]  W. A. Mulder,et al.  Higher-order triangular and tetrahedral finite elements with mass lumping for solving the wave equation , 1999 .

[30]  Hang Si,et al.  TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator , 2015, ACM Trans. Math. Softw..

[31]  D. Komatitsch,et al.  The spectral element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures , 1998, Bulletin of the Seismological Society of America.

[32]  Alfio Quarteroni,et al.  High order discontinuous Galerkin methods on simplicial elements for the elastodynamics equation , 2015, Numerical Algorithms.

[33]  Mrinal K. Sen,et al.  Dispersion analysis of the spectral element method using a triangular mesh , 2012 .

[34]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[35]  Mark Ainsworth,et al.  Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods , 2004 .

[36]  A. Patera A spectral element method for fluid dynamics: Laminar flow in a channel expansion , 1984 .

[37]  Steven J. Owen,et al.  A Survey of Unstructured Mesh Generation Technology , 1998, IMR.