Algorithms and Computation

Flows over Time: A First Step towards Solving Dynamic Packing Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433 Jan-Philipp W. Kappmeier, Jannik Matuschke, and Britta Peis Extending Partial Representations of Subclasses of Chordal Graphs . . . . 444 Pavel Klav́ık, Jan Kratochv́ıl, Yota Otachi, and Toshiki Saitoh Isomorphism for Graphs of Bounded Connected-Path-Distance-Width . . 455 Yota Otachi Algorithmic Aspects of the Intersection and Overlap Numbers of a Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465 Danny Hermelin, Romeo Rizzi, and Stéphane Vialette

[1]  Marcus Peinado Hard Graphs for the Randomized Boppana-Halldörsson Algorithm for MAXCLIQUE , 1994, Nord. J. Comput..

[2]  Rafail Ostrovsky,et al.  Approximation algorithms for the job interval selection problem and related scheduling problems , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[3]  Russell Impagliazzo,et al.  Which Problems Have Strongly Exponential Complexity? , 2001, J. Comput. Syst. Sci..

[4]  Z. Tuza,et al.  PRECOLORING EXTENSION. II. GRAPHS CLASSES RELATED TO BIPARTITE GRAPHS , 1993 .

[5]  Leonid A. Levin,et al.  Average Case Complete Problems , 1986, SIAM J. Comput..

[6]  Jian Song,et al.  Updating the complexity status of coloring graphs without a fixed induced linear forest , 2012, Theor. Comput. Sci..

[7]  Magnús M. Halldórsson,et al.  Strip Graphs: Recognition and Scheduling , 2006, WG.

[8]  Ilkka Norros,et al.  On a conditionally Poissonian graph process , 2006, Advances in Applied Probability.

[9]  Minghui Jiang,et al.  On the parameterized complexity of some optimization problems related to multiple-interval graphs , 2010, Theor. Comput. Sci..

[10]  Ingo Schiermeyer,et al.  3-Colorability in P for P6-free graphs , 2004, Discret. Appl. Math..

[11]  Zsolt Tuza,et al.  Complexity of Coloring Graphs without Forbidden Induced Subgraphs , 2001, WG.

[12]  M. Newman Power laws, Pareto distributions and Zipf's law , 2005 .

[13]  Vadim V. Lozin,et al.  Deciding k-Colorability of P5-Free Graphs in Polynomial Time , 2007, Algorithmica.

[14]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[15]  Klaus Jansen,et al.  Transfer flow graphs , 1993, Discret. Math..

[16]  Klaus Jansen,et al.  Generalized Coloring for Tree-like Graphs , 1992, WG.

[17]  Benjamin Rossman,et al.  On the constant-depth complexity of k-clique , 2008, STOC.

[18]  Juraj Stacho,et al.  3-Colouring AT-Free Graphs in Polynomial Time , 2010, Algorithmica.

[19]  Benjamin Rossman,et al.  The Monotone Complexity of k-clique on Random Graphs , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[20]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[21]  Marek Kubale Some results concerning the complexity of restricted colorings of graphs , 1992, Discret. Appl. Math..

[22]  Michael R. Fellows,et al.  On the parameterized complexity of multiple-interval graph problems , 2009, Theor. Comput. Sci..

[23]  Marcus Peinado Go with the Winners Algorithms for Cliques in Random Graphs , 2001, ISAAC.

[24]  Kellogg S. Booth,et al.  Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..

[25]  Stefan Kratsch,et al.  Cross-Composition: A New Technique for Kernelization Lower Bounds , 2011, STACS.

[26]  S. Louis Hakimi,et al.  Complexity Results for Scheduling Tasks with Discrete Starting Times , 1982, J. Algorithms.

[27]  Dániel Marx,et al.  Precoloring extension on unit interval graphs , 2006, Discret. Appl. Math..

[28]  Reuven Bar-Yehuda,et al.  Scheduling split intervals , 2002, SODA '02.

[29]  Michael Mitzenmacher,et al.  A Brief History of Generative Models for Power Law and Lognormal Distributions , 2004, Internet Math..

[30]  L. Mirny,et al.  Protein complexes and functional modules in molecular networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Rolf H. Möhring,et al.  Integrated Sequencing and Scheduling in Coil Coating , 2011, Manag. Sci..

[32]  Benjamin Rossman,et al.  Average-case complexity of detecting cliques , 2010 .

[33]  Ingo Schiermeyer,et al.  Vertex Colouring and Forbidden Subgraphs – A Survey , 2004, Graphs Comb..

[34]  D. R. Fulkerson,et al.  Incidence matrices and interval graphs , 1965 .

[35]  R. Luce,et al.  A method of matrix analysis of group structure , 1949, Psychometrika.

[36]  Javier Marenco,et al.  Exploring the complexity boundary between coloring and list-coloring , 2006, Electron. Notes Discret. Math..

[37]  Frits C. R. Spieksma,et al.  Interval scheduling: A survey , 2007 .

[38]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[39]  Vadim V. Lozin,et al.  Coloring edges and vertices of graphs without short or long cycles , 2007, Contributions Discret. Math..

[40]  Najiba Sbihi,et al.  Algorithme de recherche d'un stable de cardinalite maximum dans un graphe sans etoile , 1980, Discret. Math..