A multi-species synthesis of physiological mechanisms in drought-induced tree mortality

Jordi Martínez-Vilalta | Francesco Ripullone | Harald Bugmann | Chonggang Xu | Michel Vennetier | Andy Hector | Richard C Cobb | Rodrigo Vargas | Patrick J. Hudson | Rodrigo Hakamada | Arthur Gessler | M. G. Ryan | Maurizio Mencuccini | Craig D Allen | Sanna Sevanto | Michael J O'Brien | Trenton E Franz | L. Anderegg | N. McDowell | J. Muss | Chonggang Xu | C. Allen | Maurizio Mencuccini | R. Vargas | J. Sperry | M. Germino | K. Reinhardt | M. Vennetier | W. Pockman | D. Breshears | T. Kolb | J. Plaut | E. Yépez | A. Hector | D. Beerling | T. Brodribb | M. Zeppel | H. Adams | W. Anderegg | H. Bugmann | H. Hartmann | T. Huxman | T. Franz | L. Dickman | S. Sevanto | R. Pangle | J. Limousin | R. Cobb | A. O'Grady | E. Pinkard | B. Ewers | A. Macalady | J. Quirk | J. Kane | A. Gessler | Rodrigo Hakamada | G. Barron‐Gafford | A. Sala | J. Martínez‐Vilalta | James D. Lewis | D. Tissue | F. Piper | S. Landhäusser | D. Way | D. Law | F. Ripullone | P. Mitchell | U. Hacke | N. Garcia-Forner | D. Love | P. Hudson | A. Collins | Honglang Duan | L. Galiano | D. A. Gálvez | M. Gaylord | Michael W. Jenkins | Michael J. O’Brien | John S Sperry | Henry D Adams | Melanie J B Zeppel | William R L Anderegg | Henrik Hartmann | Simon M Landhäusser | David T Tissue | Travis E Huxman | Patrick J Hudson | Leander D L Anderegg | Greg A Barron-Gafford | David J Beerling | David D Breshears | Timothy J Brodribb | Adam D Collins | L Turin Dickman | Honglang Duan | Brent E Ewers | Lucía Galiano | David A Galvez | Núria Garcia-Forner | Monica L Gaylord | Matthew J Germino | Uwe G Hacke | Michael W Jenkins | Jeffrey M Kane | Thomas E Kolb | Darin J Law | James D Lewis | Jean-Marc Limousin | David M Love | Alison K Macalady | Patrick J Mitchell | Jordan D Muss | Anthony P O'Grady | Robert E Pangle | Elizabeth A Pinkard | Frida I Piper | Jennifer A Plaut | William T Pockman | Joe Quirk | Keith Reinhardt | Michael G Ryan | Anna Sala | Danielle A Way | Enrico A Yepez | Nate G McDowell | Joe Quirk | Lucía Galiano | Núria Garcia‐Forner | Rodrigo E. Hakamada

[1]  Jordi Martínez-Vilalta,et al.  Water potential regulation, stomatal behaviour and hydraulic transport under drought: deconstructing the iso/anisohydric concept. , 2017, Plant, cell & environment.

[2]  A. Nardini,et al.  Drought Stress and the Recovery from Xylem Embolism in Woody Plants , 2017 .

[3]  F. Lloret,et al.  Dynamics of non-structural carbohydrates in terrestrial plants: a global synthesis , 2016 .

[4]  N. McDowell,et al.  Pragmatic hydraulic theory predicts stomatal responses to climatic water deficits. , 2016, The New phytologist.

[5]  F. Piper,et al.  Carbon dynamics of Acer pseudoplatanus seedlings under drought and complete darkness. , 2016, Tree physiology.

[6]  S. Trumbore,et al.  Understanding the roles of nonstructural carbohydrates in forest trees - from what we can measure to what we want to know. , 2016, The New phytologist.

[7]  Brendan Choat,et al.  Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe , 2016, Proceedings of the National Academy of Sciences.

[8]  Nate G. McDowell,et al.  Multi-scale predictions of massive conifer mortality due to chronic temperature rise , 2016 .

[9]  N. McDowell,et al.  Responses of two semiarid conifer tree species to reduced precipitation and warming reveal new perspectives for stomatal regulation. , 2016, Plant, cell & environment.

[10]  H. Hartmann Carbon starvation during drought-induced tree mortality – are we chasing a myth? , 2015 .

[11]  M. Germino A carbohydrate quandary. , 2015, Tree physiology.

[12]  Joseph R. Stinziano,et al.  Non-structural carbohydrates in woody plants compared among laboratories. , 2015, Tree physiology.

[13]  N. McDowell,et al.  Tree mortality from drought, insects, and their interactions in a changing climate. , 2015, The New phytologist.

[14]  Jordi Martínez-Vilalta,et al.  Coordination of physiological traits involved in drought-induced mortality of woody plants. , 2015, The New phytologist.

[15]  Nate G. McDowell,et al.  On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene , 2015 .

[16]  N. McDowell,et al.  Interdependence of chronic hydraulic dysfunction and canopy processes can improve integrated models of tree response to drought , 2015 .

[17]  J. Sperry,et al.  What plant hydraulics can tell us about responses to climate-change droughts. , 2015, The New phytologist.

[18]  C. Körner Paradigm shift in plant growth control. , 2015, Current opinion in plant biology.

[19]  Christopher B. Field,et al.  Tree mortality predicted from drought-induced vascular damage , 2015 .

[20]  T. Dawson,et al.  Predicting plant vulnerability to drought in biodiverse regions using functional traits , 2015, Proceedings of the National Academy of Sciences.

[21]  N. McDowell,et al.  Drought and resprouting plants. , 2015, The New phytologist.

[22]  Contrasting nonstructural carbohydrate dynamics of tropical tree seedlings under water deficit and variability. , 2015, The New phytologist.

[23]  T. Brodribb,et al.  Conifer species adapt to low-rainfall climates by following one of two divergent pathways , 2014, Proceedings of the National Academy of Sciences.

[24]  J. Martínez‐Vilalta,et al.  The effect of fungal pathogens on the water and carbon economy of trees: implications for drought-induced mortality. , 2014, The New phytologist.

[25]  A. Hector,et al.  Drought survival of tropical tree seedlings enhanced by non-structural carbohydrate levels , 2014 .

[26]  A. O'Grady,et al.  Co-ordination of growth, gas exchange and hydraulics define the carbon safety margin in tree species with contrasting drought strategies. , 2014, Tree physiology.

[27]  Christian Körner,et al.  Moving beyond photosynthesis: from carbon source to sink-driven vegetation modeling. , 2014, The New phytologist.

[28]  Pierre Friedlingstein,et al.  Uncertainties in CMIP5 Climate Projections due to Carbon Cycle Feedbacks , 2014 .

[29]  N. McDowell,et al.  How do trees die? A test of the hydraulic failure and carbon starvation hypotheses , 2013, Plant, cell & environment.

[30]  D. Francis,et al.  Progress in Botany , 2011, Progress in Botany.

[31]  South Africa,et al.  Climate change 2014: impacts, adaptation, and vulnerability – IPCC WGII AR5 summary for policymakers , 2014 .

[32]  C. Field Climate change 2014 : impacts, adaptation and vulnerability : Working Group II contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change , 2014 .

[33]  F. Woodward,et al.  Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2 , 2013, Proceedings of the National Academy of Sciences.

[34]  A. P. Williams,et al.  Empirical and process-based approaches to climate-induced forest mortality models , 2013, Front. Plant Sci..

[35]  N. Holbrook,et al.  Cutting xylem under tension or supersaturated with gas can generate PLC and the appearance of rapid recovery from embolism. , 2013, Plant, cell & environment.

[36]  S. Trumbore,et al.  Thirst beats hunger - declining hydration during drought prevents carbon starvation in Norway spruce saplings. , 2013, The New phytologist.

[37]  M. G. Ryan,et al.  Evaluating theories of drought-induced vegetation mortality using a multimodel-experiment framework. , 2013, The New phytologist.

[38]  N. McDowell,et al.  Increased susceptibility to drought-induced mortality in Sequoia sempervirens (Cupressaceae) trees under Cenozoic atmospheric carbon dioxide starvation. , 2013, American journal of botany.

[39]  L. Anderegg,et al.  Consequences of widespread tree mortality triggered by drought and temperature stress , 2013 .

[40]  A. Nardini,et al.  Global convergence in the vulnerability of forests to drought , 2012, Nature.

[41]  Daniel M. Johnson,et al.  Hydraulic safety margins and embolism reversal in stems and leaves: why are conifers and angiosperms so different? , 2012, Plant science : an international journal of experimental plant biology.

[42]  N. McDowell,et al.  Hydraulic limits preceding mortality in a piñon-juniper woodland under experimental drought. , 2012, Plant, cell & environment.

[43]  D. Woodruff,et al.  Carbon dynamics in trees: feast or famine? , 2012, Tree physiology.

[44]  Alistair M. S. Smith,et al.  Ecohydrological consequences of drought‐ and infestation‐ triggered tree die‐off: insights and hypotheses , 2011 .

[45]  V. Lieffers,et al.  Defoliation increases risk of carbon starvation in root systems of mature aspen , 2011, Trees.

[46]  N. McDowell,et al.  The interdependence of mechanisms underlying climate-driven vegetation mortality. , 2011, Trends in ecology & evolution.

[47]  S. Higgins,et al.  TRY – a global database of plant traits , 2011, Global Change Biology.

[48]  N. McDowell,et al.  Mechanisms Linking Drought, Hydraulics, Carbon Metabolism, and Vegetation Mortality1[W] , 2011, Plant Physiology.

[49]  N. McDowell,et al.  The mechanisms of carbon starvation: how, when, or does it even occur at all? , 2010, The New phytologist.

[50]  A. Sala,et al.  Physiological mechanisms of drought-induced tree mortality are far from being resolved. , 2010, The New phytologist.

[51]  N. McDowell,et al.  A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests , 2010 .

[52]  Daniel M. Johnson,et al.  Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance , 2009 .

[53]  J. Chave,et al.  Towards a Worldwide Wood Economics Spectrum 2 . L E a D I N G D I M E N S I O N S I N W O O D F U N C T I O N , 2022 .

[54]  David A. Coomes,et al.  Global wood density database , 2009 .

[55]  B. Dawson,et al.  INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (IPCC) , 2008 .

[56]  T. Brodribb,et al.  Hydraulic Failure Defines the Recovery and Point of Death in Water-Stressed Conifers[OA] , 2008, Plant Physiology.

[57]  N. McDowell,et al.  Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? , 2008, The New phytologist.

[58]  Lars Markesteijn,et al.  Seedling Traits Determine Drought Tolerance of Tropical Tree Species , 2008 .

[59]  Barbara L. Gartner,et al.  Cavitation and water storage capacity in bole xylem segments of mature and young Douglas-fir trees , 2001, Trees.

[60]  Ülo Niinemets,et al.  GLOBAL-SCALE CLIMATIC CONTROLS OF LEAF DRY MASS PER AREA, DENSITY, AND THICKNESS IN TREES AND SHRUBS , 2001 .

[61]  Ülo Niinemets,et al.  Research review. Components of leaf dry mass per area – thickness and density – alter leaf photosynthetic capacity in reverse directions in woody plants , 1999 .

[62]  Frederick R. Adler,et al.  Limitation of plant water use by rhizosphere and xylem conductance: results from a model , 1998 .