Very Large-Scale Singular Value Decomposition Using Tensor Train Networks
暂无分享,去创建一个
[1] Bart Vandereycken,et al. The geometry of algorithms using hierarchical tensors , 2013, Linear Algebra and its Applications.
[2] F. Verstraete,et al. Renormalization algorithms for Quantum-Many Body Systems in two and higher dimensions , 2004, cond-mat/0407066.
[3] Y. Saad. Numerical Methods for Large Eigenvalue Problems , 2011 .
[4] S. V. Dolgov,et al. ALTERNATING MINIMAL ENERGY METHODS FOR LINEAR SYSTEMS IN HIGHER DIMENSIONS∗ , 2014 .
[5] Andrew V. Knyazev,et al. Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method , 2001, SIAM J. Sci. Comput..
[6] Yinchu Zhu,et al. Breaking the curse of dimensionality in regression , 2017, ArXiv.
[7] D. Sorensen. Numerical methods for large eigenvalue problems , 2002, Acta Numerica.
[8] W. Hackbusch,et al. A New Scheme for the Tensor Representation , 2009 .
[9] Daniel Kressner,et al. A literature survey of low‐rank tensor approximation techniques , 2013, 1302.7121.
[10] J. Ballani,et al. Black box approximation of tensors in hierarchical Tucker format , 2013 .
[11] Eugene E. Tyrtyshnikov,et al. Breaking the Curse of Dimensionality, Or How to Use SVD in Many Dimensions , 2009, SIAM J. Sci. Comput..
[12] Martin J. Mohlenkamp,et al. Numerical operator calculus in higher dimensions , 2002, Proceedings of the National Academy of Sciences of the United States of America.
[13] Yin Zhang,et al. Limited Memory Block Krylov Subspace Optimization for Computing Dominant Singular Value Decompositions , 2013, SIAM J. Sci. Comput..
[14] Ivan V. Oseledets,et al. Solution of Linear Systems and Matrix Inversion in the TT-Format , 2012, SIAM J. Sci. Comput..
[15] Lars Grasedyck,et al. Hierarchical Singular Value Decomposition of Tensors , 2010, SIAM J. Matrix Anal. Appl..
[16] Reinhold Schneider,et al. On manifolds of tensors of fixed TT-rank , 2012, Numerische Mathematik.
[17] Vin de Silva,et al. Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.
[18] Boris N. Khoromskij,et al. Computation of extreme eigenvalues in higher dimensions using block tensor train format , 2013, Comput. Phys. Commun..
[19] Andrzej Cichocki,et al. Fundamental Tensor Operations for Large-Scale Data Analysis in Tensor Train Formats , 2014, ArXiv.
[20] D. Sorensen,et al. 4. The Implicitly Restarted Arnoldi Method , 1998 .
[21] Alan M. Frieze,et al. Fast Monte-Carlo algorithms for finding low-rank approximations , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).
[22] Jennifer Seberry,et al. The Strong Kronecker Product , 1994, J. Comb. Theory, Ser. A.
[23] E. Tyrtyshnikov,et al. TT-cross approximation for multidimensional arrays , 2010 .
[24] VLADIMIR A. KAZEEV,et al. Low-Rank Explicit QTT Representation of the Laplace Operator and Its Inverse , 2012, SIAM J. Matrix Anal. Appl..
[25] B. Khoromskij,et al. DMRG+QTT approach to computation of the ground state for the molecular Schrödinger operator , 2010 .
[26] Reinhold Schneider,et al. The Alternating Linear Scheme for Tensor Optimization in the Tensor Train Format , 2012, SIAM J. Sci. Comput..
[27] G. Vidal. Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.
[28] Joos Vandewalle,et al. A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..
[29] K. Fan. On a Theorem of Weyl Concerning Eigenvalues of Linear Transformations: II. , 1949, Proceedings of the National Academy of Sciences of the United States of America.
[30] W. Hackbusch. Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.
[31] Yang Qi,et al. On the geometry of tensor network states , 2011, Quantum Inf. Comput..
[32] Ivan Oseledets,et al. Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..
[33] Andrzej Cichocki,et al. Nonnegative Matrix and Tensor Factorization T , 2007 .
[34] Alan M. Frieze,et al. Fast monte-carlo algorithms for finding low-rank approximations , 2004, JACM.
[35] James Demmel,et al. Applied Numerical Linear Algebra , 1997 .
[36] Daniel Kressner,et al. Low-Rank Tensor Methods with Subspace Correction for Symmetric Eigenvalue Problems , 2014, SIAM J. Sci. Comput..
[37] Boris N. Khoromskij,et al. Two-Level QTT-Tucker Format for Optimized Tensor Calculus , 2013, SIAM J. Matrix Anal. Appl..
[38] О. С. Лебедева. Tensor conjugate-gradient-type method for Rayleigh quotient minimization in block QTT format , 2011 .
[39] G. Golub,et al. Tracking a few extreme singular values and vectors in signal processing , 1990, Proc. IEEE.
[40] Luis Mateus Rocha,et al. Singular value decomposition and principal component analysis , 2003 .
[41] U. Schollwoeck. The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.
[42] Reinhold Schneider,et al. Optimization problems in contracted tensor networks , 2011, Comput. Vis. Sci..
[43] Thomas Huckle,et al. Subspace Iteration Methods in terms of Matrix Product States , 2012 .
[44] Thomas Mach,et al. Computing Inner Eigenvalues of Matrices in Tensor Train Matrix Format , 2013 .
[45] White,et al. Density-matrix algorithms for quantum renormalization groups. , 1993, Physical review. B, Condensed matter.
[46] Vladimir A. Kazeev,et al. Multilevel Toeplitz Matrices Generated by Tensor-Structured Vectors and Convolution with Logarithmic Complexity , 2013, SIAM J. Sci. Comput..
[47] Reinhold Schneider,et al. Dynamical Approximation by Hierarchical Tucker and Tensor-Train Tensors , 2013, SIAM J. Matrix Anal. Appl..
[48] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..