3D hydrophobic moment vectors as a tool to characterize the surface polarity of amphiphilic peptides.

The interaction of membranes with peptides and proteins is largely determined by their amphiphilic character. Hydrophobic moments of helical segments are commonly derived from their two-dimensional helical wheel projections, and the same is true for β-sheets. However, to the best of our knowledge, there exists no method to describe structures in three dimensions or molecules with irregular shape. Here, we define the hydrophobic moment of a molecule as a vector in three dimensions by evaluating the surface distribution of all hydrophilic and lipophilic regions over any given shape. The electrostatic potential on the molecular surface is calculated based on the atomic point charges. The resulting hydrophobic moment vector is specific for the instantaneous conformation, and it takes into account all structural characteristics of the molecule, e.g., partial unfolding, bending, and side-chain torsion angles. Extended all-atom molecular dynamics simulations are then used to calculate the equilibrium hydrophobic moments for two antimicrobial peptides, gramicidin S and PGLa, under different conditions. We show that their effective hydrophobic moment vectors reflect the distribution of polar and nonpolar patches on the molecular surface and the calculated electrostatic surface potential. A comparison of simulations in solution and in lipid membranes shows how the peptides undergo internal conformational rearrangement upon binding to the bilayer surface. A good correlation with solid-state NMR data indicates that the hydrophobic moment vector can be used to predict the membrane binding geometry of peptides. This method is available as a web application on http://www.ibg.kit.edu/HM/.

[1]  A. Ulrich,et al.  Influence of whole-body dynamics on 15N PISEMA NMR spectra of membrane proteins: a theoretical analysis. , 2009, Biophysical journal.

[2]  Jonathan Zerweck,et al.  Synergistic insertion of antimicrobial magainin-family peptides in membranes depends on the lipid spontaneous curvature. , 2013, Biophysical journal.

[3]  U. Dürr,et al.  ‘Boomerang’‐like insertion of a fusogenic peptide in a lipid membrane revealed by solid‐state 19F NMR , 2004, Magnetic resonance in chemistry : MRC.

[4]  Jeremy C. Smith,et al.  Reorientation and dimerization of the membrane-bound antimicrobial peptide PGLa from microsecond all-atom MD simulations. , 2012, Biophysical journal.

[5]  R. Heinzmann,et al.  A kinked antimicrobial peptide from Bombina maxima. II. Behavior in phospholipid bilayers , 2011, European Biophysics Journal.

[6]  M. X. Fernandes,et al.  Escherichia coli Cell Surface Perturbation and Disruption Induced by Antimicrobial Peptides BP100 and pepR* , 2010, The Journal of Biological Chemistry.

[7]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[8]  A. Ramamoorthy,et al.  PISEMA Solid-State NMR Spectroscopy , 2005 .

[9]  Jeremy C. Smith,et al.  Mechanism and kinetics of peptide partitioning into membranes from all-atom simulations of thermostable peptides. , 2010, Journal of the American Chemical Society.

[10]  J. Killian,et al.  Influence of flanking residues on tilt and rotation angles of transmembrane peptides in lipid bilayers. A solid-state 2H NMR study. , 2005, Biochemistry.

[11]  Gordon M. Crippen,et al.  Prediction of Physicochemical Parameters by Atomic Contributions , 1999, J. Chem. Inf. Comput. Sci..

[12]  A. Ulrich,et al.  Hydrophobic mismatch of mobile transmembrane helices: Merging theory and experiments. , 2012, Biochimica et biophysica acta.

[13]  A. Ulrich Solid State 19F-NMR Analysis of Oriented Biomembranes , 2008 .

[14]  J. Killian,et al.  On the orientation of a designed transmembrane peptide: toward the right tilt angle? , 2007, Journal of the American Chemical Society.

[15]  Themis Lazaridis,et al.  Antimicrobial peptides bind more strongly to membrane pores. , 2010, Biochimica et biophysica acta.

[16]  Kuo-Chen Chou,et al.  Heuristic molecular lipophilicity potential (HMLP): A 2D‐QSAR study to LADH of molecular family pyrazole and derivatives , 2005, J. Comput. Chem..

[17]  T. Steitz,et al.  Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. , 1986, Annual review of biophysics and biophysical chemistry.

[18]  A. Ulrich,et al.  Synergistic Transmembrane Alignment of the Antimicrobial Heterodimer PGLa/Magainin* , 2006, Journal of Biological Chemistry.

[19]  Edgar Jacoby,et al.  Molecular lipophilicity in protein modeling and drug design. , 2007, Current medicinal chemistry.

[20]  A. Ulrich,et al.  Influence of C-terminal amidation on the antimicrobial and hemolytic activities of cationic α-helical peptides , 2007 .

[21]  Nathan A. Baker,et al.  Electrostatics of nanosystems: Application to microtubules and the ribosome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[22]  R. Larson,et al.  Effect of salt on the interactions of antimicrobial peptides with zwitterionic lipid bilayers. , 2006, Biochimica et biophysica acta.

[23]  A. Ulrich,et al.  NMR methods for studying membrane‐active antimicrobial peptides , 2004 .

[24]  U. Dürr,et al.  Solid-state NMR analysis of the PGLa peptide orientation in DMPC bilayers: structural fidelity of 2H-labels versus high sensitivity of 19F-NMR. , 2006, Biophysical journal.

[25]  M. Elstner,et al.  Peptide-lipid interactions of the stress-response peptide TisB that induces bacterial persistence. , 2012, Biophysical journal.

[26]  Alexander P. Lyubartsev,et al.  Derivation and Systematic Validation of a Refined All-Atom Force Field for Phosphatidylcholine Lipids , 2012, The journal of physical chemistry. B.

[27]  Sergio Decherchi,et al.  A general and Robust Ray-Casting-Based Algorithm for Triangulating Surfaces at the Nanoscale , 2013, PloS one.

[28]  A. Ulrich,et al.  Evaluating the amino acid CF3‐bicyclopentylglycine as a new label for solid‐state 19F‐NMR structure analysis of membrane‐bound peptides , 2007, Journal of peptide science : an official publication of the European Peptide Society.

[29]  Thijs Beuming,et al.  A knowledge-based scale for the analysis and prediction of buried and exposed faces of transmembrane domain proteins , 2004, Bioinform..

[30]  A. Ulrich Solid state 19F NMR methods for studying biomembranes , 2005 .

[31]  Stephen H. White,et al.  Experimentally determined hydrophobicity scale for proteins at membrane interfaces , 1996, Nature Structural Biology.

[32]  J Andrew McCammon,et al.  Comparative molecular dynamics simulations of the antimicrobial peptide CM15 in model lipid bilayers. , 2012, Biochimica et biophysica acta.

[33]  R. Dror,et al.  Improved side-chain torsion potentials for the Amber ff99SB protein force field , 2010, Proteins.

[34]  R. Doolittle,et al.  A simple method for displaying the hydropathic character of a protein. , 1982, Journal of molecular biology.

[35]  A. Naito,et al.  Dynamic structure of bombolitin II bound to lipid bilayers as revealed by solid-state NMR and molecular-dynamics simulation. , 2010, Biophysical journal.

[36]  C. Sachse,et al.  (19)F NMR screening of unrelated antimicrobial peptides shows that membrane interactions are largely governed by lipids. , 2014, Biochimica et biophysica acta.

[37]  Self-assembly of flexible β-strands into immobile amyloid-like β-sheets in membranes as revealed by solid-state 19F NMR. , 2012, Journal of the American Chemical Society.

[38]  A. Ulrich,et al.  19F NMR analysis of the antimicrobial peptide PGLa bound to native cell membranes from bacterial protoplasts and human erythrocytes. , 2010, Journal of the American Chemical Society.

[39]  M. G. Brazhnikova,et al.  GRAMICIDIN S ORIGIN AND MODE OF ACTION , 1944 .

[40]  R. Koeppe,et al.  Buried lysine, but not arginine, titrates and alters transmembrane helix tilt , 2013, Proceedings of the National Academy of Sciences.

[41]  S. Grage,et al.  Membrane alignment of the pore-forming component TatA(d) of the twin-arginine translocase from Bacillus subtilis resolved by solid-state NMR spectroscopy. , 2010, Journal of the American Chemical Society.

[42]  Jimmy D. Bell,et al.  Modern Magnetic Resonance , 2006 .

[43]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997, J. Comput. Chem..

[44]  A. Ulrich,et al.  Solid-state (19)F-NMR of peptides in native membranes. , 2012, Topics in current chemistry.

[45]  A. Ulrich,et al.  Using a sterically restrictive amino acid as a 19F NMR label to monitor and to control peptide aggregation in membranes. , 2008, Journal of the American Chemical Society.

[46]  U. Dürr,et al.  Solid State NMR Structure Analysis of the Antimicrobial Peptide Gramicidin S in Lipid Membranes: Concentration-Dependent Re-alignment and Self-Assembly as a β-Barrel. , 2008, Topics in current chemistry.

[47]  Yuan Xu,et al.  A variable target intensity-restrained global optimization (VARTIGO) procedure for determining three-dimensional structures of polypeptides from NOESY data: Application to gramicidin-S , 1995, Journal of biomolecular NMR.

[48]  R. Fu,et al.  Solid-state 19F NMR spectroscopy reveals that Trp41 participates in the gating mechanism of the M2 proton channel of influenza A virus. , 2008, Journal of the American Chemical Society.

[49]  C. Böttcher,et al.  Chemical labeling strategy with (R)- and (S)-trifluoromethylalanine for solid state 19F NMR analysis of peptaibols in membranes. , 2009, Journal of the American Chemical Society.

[50]  F. Separovic,et al.  Solid-state NMR study of antimicrobial peptides from Australian frogs in phospholipid membranes , 2004, European Biophysics Journal.

[51]  R. Nussinov,et al.  Antimicrobial properties of amyloid peptides. , 2012, Molecular pharmaceutics.

[52]  Huey W. Huang,et al.  Circular dichroism of oriented α helices. I: Proof of the exciton theory , 1988 .

[53]  Peter M. Kasson,et al.  GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit , 2013, Bioinform..

[54]  M Zasloff,et al.  Antimicrobial properties of peptides from Xenopus granular gland secretions , 1988, FEBS letters.

[55]  S. Lowen The Biophysical Journal , 1960, Nature.

[56]  A. Ulrich,et al.  Conformation and membrane orientation of amphiphilic helical peptides by oriented circular dichroism. , 2008, Biophysical journal.

[57]  C. Sachse,et al.  Orientation of the antimicrobial peptide PGLa in lipid membranes determined from 19F-NMR dipolar couplings of 4-CF3-phenylglycine labels. , 2004, Journal of magnetic resonance.

[58]  J. Gesell,et al.  Orientations of amphipathic helical peptides in membrane bilayers determined by solid-state NMR spectroscopy , 1991, Journal of biomolecular NMR.

[59]  Erik Strandberg,et al.  Geometry and Intrinsic Tilt of a Tryptophan-Anchored Transmembrane α-Helix Determined by 2H NMR , 2002 .

[60]  R. Koeppe,et al.  Charged or Aromatic Anchor Residue Dependence of Transmembrane Peptide Tilt* , 2010, The Journal of Biological Chemistry.

[61]  D. Eisenberg,et al.  Hydrophobic moments and protein structure , 1982 .

[62]  A. Ulrich,et al.  Solid-state NMR analysis comparing the designer-made antibiotic MSI-103 with its parent peptide PGLa in lipid bilayers. , 2008, Biochemistry.

[63]  S. White,et al.  MPEx: A tool for exploring membrane proteins , 2009, Protein science : a publication of the Protein Society.

[64]  C. Sachse,et al.  Concentration-dependent realignment of the antimicrobial peptide PGLa in lipid membranes observed by solid-state 19F-NMR. , 2005, Biophysical journal.

[65]  Jeremy C. Smith,et al.  Peptide Partitioning and Folding into Lipid Bilayers. , 2009, Journal of chemical theory and computation.

[66]  A. Ulrich,et al.  Conditions affecting the re-alignment of the antimicrobial peptide PGLa in membranes as monitored by solid state 2H-NMR. , 2006, Biochimica et biophysica acta.

[67]  J. Salgado,et al.  The dynamic orientation of membrane-bound peptides: bridging simulations and experiments. , 2007, Biophysical journal.

[68]  S. Grage,et al.  Temperature-dependent transmembrane insertion of the amphiphilic peptide PGLa in lipid bilayers observed by solid state 19F NMR spectroscopy. , 2008, Journal of the American Chemical Society.

[69]  R. Larson,et al.  The MARTINI Coarse-Grained Force Field: Extension to Proteins. , 2008, Journal of chemical theory and computation.

[70]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[71]  T. Cross,et al.  PISEMA powder patterns and PISA wheels. , 2001, Journal of magnetic resonance.

[72]  Anton A Polyansky,et al.  Hydrophobic Matching Controls the Tilt and Stability of the Dimeric Platelet-derived Growth Factor Receptor (PDGFR) β Transmembrane Segment* , 2012, The Journal of Biological Chemistry.

[73]  U. Dürr,et al.  Solid state 19F NMR parameters of fluorine-labeled amino acids. Part II: aliphatic substituents. , 2008, Journal of magnetic resonance.

[74]  Erik Strandberg,et al.  How reliable are molecular dynamics simulations of membrane active antimicrobial peptides? , 2014, Biochimica et biophysica acta.

[75]  A. Ulrich,et al.  Lipid shape is a key factor for membrane interactions of amphipathic helical peptides. , 2012, Biochimica et biophysica acta.

[76]  T. Creamer,et al.  Solvation energies of amino acid side chains and backbone in a family of host-guest pentapeptides. , 1996, Biochemistry.

[77]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[78]  U. Dürr,et al.  Solid state 19F NMR parameters of fluorine-labeled amino acids. Part I: aromatic substituents. , 2008, Journal of magnetic resonance.

[79]  David Eisenberg,et al.  The helical hydrophobic moment: a measure of the amphiphilicity of a helix , 1982, Nature.

[80]  S. Vik The transmembrane helices of the L, M, and N subunits of Complex I from E. coli can be assigned on the basis of conservation and hydrophobic moment analysis , 2011, FEBS letters.

[81]  K. Sharp,et al.  Accurate Calculation of Hydration Free Energies Using Macroscopic Solvent Models , 1994 .

[82]  R. Hodges,et al.  Membrane-bound structure and alignment of the antimicrobial β-sheet peptide gramicidin S derived from angular and distance constraints by solid state 19F-NMR , 2001, Journal of biomolecular NMR.

[83]  S. Grage,et al.  Solid state NMR analysis of the dipolar couplings within and between distant CF3-groups in a membrane-bound peptide. , 2006, Journal of magnetic resonance.

[84]  G. Olah,et al.  Method of oriented circular dichroism. , 1990, Biophysical journal.

[85]  G. F. Gause,et al.  Gramicidin S and its use in the Treatment of Infected Wounds , 1944, Nature.

[86]  S. Grage,et al.  Dynamic transitions of membrane-active peptides. , 2010, Methods in molecular biology.

[87]  R. Epand,et al.  Structural aspects of the interaction of peptidyl-glycylleucine-carboxyamide, a highly potent antimicrobial peptide from frog skin, with lipids. , 1997, European journal of biochemistry.

[88]  A. Ulrich,et al.  Structure analysis of the membrane protein TatC(d) from the Tat system of B. subtilis by circular dichroism. , 2009, Biochimica et biophysica acta.

[89]  C. Yip,et al.  Molecular dynamics simulations of indolicidin association with model lipid bilayers. , 2007, Biophysical journal.

[90]  D. Gerthsen,et al.  Damage of the Bacterial Cell Envelope by Antimicrobial Peptides Gramicidin S and PGLa as Revealed by Transmission and Scanning Electron Microscopy , 2010, Antimicrobial Agents and Chemotherapy.

[91]  A. Ulrich,et al.  Solid state NMR analysis of peptides in membranes: Influence of dynamics and labeling scheme. , 2010, Biochimica et biophysica acta.

[92]  A. Ulrich,et al.  Orientation and dynamics of peptides in membranes calculated from 2H-NMR data. , 2009, Biophysical journal.

[93]  Sergii,et al.  Concentration-dependent re-alignment of the antimicrobial peptide PGLa in lipid membranes observed by solid state 19 F-NMR , 2005 .

[94]  S. Opella,et al.  Structure and dynamics of the antibiotic peptide PGLa in membranes by solution and solid-state nuclear magnetic resonance spectroscopy. , 1998, Biophysical journal.

[95]  Huey W. Huang,et al.  Circular dichroism of oriented α‐helices. II. Electric field oriented polypeptides , 1988 .

[96]  A. Ulrich,et al.  Synergistic transmembrane insertion of the heterodimeric PGLa/magainin 2 complex studied by solid-state NMR. , 2009, Biochimica et biophysica acta.

[97]  L. Rogers,et al.  Fowler's position. , 1946, Lancet.

[98]  Erik Strandberg,et al.  Tilt angles of transmembrane model peptides in oriented and non-oriented lipid bilayers as determined by 2H solid-state NMR. , 2004, Biophysical journal.