High power light emitting diodes (LEDs) are of interest for many lighting applications. Flux improvements can be achieved by scaling conventional chips to larger dimensions. However this scaling results in a decrease in extraction efficiency. These penalties can be offset by modifying the chip geometry such that the number of internal reflections is reduced, thereby increasing the probability of photon escape. LEDs with a truncated-inverted-pyramid (TIP) geometry have been fabricated and packaged. Peak efficiencies exceeding 100 lm/W have been measured (100 mA dc, 300 K) for orange ((lambda) p approximately 610 m) devices. In the red wavelength regime ((lambda) p approximately 650 nm), peak external quantum efficiencies of 55% (100 mA dc, 300 K) have been achieved. Flux exceeding 65 lumens from a single 594 nm device has also been demonstrated. These characteristics match and/or exceed the performance of many conventional lighting sources.