Geometric interpretation of the Tschauner–Hempel solutions for satellite relative motion

Abstract The fundamental solutions of the Tschauner–Hempel equations, which describe the motion of a deputy satellite relative to a chief satellite with arbitrary eccentricity, are interpreted geometrically as generalizations of the drifting two-by-one ellipse that describes relative motion in circular orbits. General solutions are formed by taking linear combinations of these fundamental solutions. The amplitudes of these fundamental solutions are proposed as a parameterization of relative motion in elliptic orbits. A simple maneuver scheme is also developed to achieve arbitrary desired changes in the fundamental-solution amplitudes.

[1]  Di Zhou,et al.  A second-order solution to the two-point boundary value problem for rendezvous in eccentric orbits , 2010 .

[2]  Robin Larsson,et al.  System test results from the GNC experiments on the PRISMA in-orbit test bed , 2011 .

[3]  Prasenjit Sengupta,et al.  Analytical Solution for Power-Limited Optimal Rendezvous near an Elliptic Orbit , 2008 .

[4]  Sang-Young Park,et al.  Analytic Solution for Fuel-Optimal Reconfiguration in Relative Motion , 2009 .

[5]  K. Yamanaka,et al.  New State Transition Matrix for Relative Motion on an Arbitrary Elliptical Orbit , 2002 .

[6]  S. Vadali,et al.  Formation Establishment and Reconfiguration Using Impulsive Control , 2005 .

[7]  G. Lantoine,et al.  Quadratically Constrained Linear-Quadratic Regulator Approach for Finite-Thrust Orbital Rendezvous , 2012 .

[8]  Edward N. Hartley,et al.  Model predictive control system design and implementation for spacecraft rendezvous , 2012 .

[9]  Akira Ichikawa,et al.  Periodic orbits of nonlinear relative dynamics along an eccentric orbit , 2010 .

[10]  Denis Arzelier,et al.  Using Polynomial Optimization to Solve the Fuel-Optimal Linear Impulsive Rendezvous Problem , 2011 .

[11]  S. Vadali,et al.  Relative Motion and the Geometry of Formations in Keplerian Elliptic Orbits with Arbitrary Eccentricity , 2007 .

[12]  David K. Geller,et al.  Optimal Orbital Rendezvous Maneuvering for Angles-Only Navigation , 2009 .

[13]  W. H. Clohessy,et al.  Terminal Guidance System for Satellite Rendezvous , 2012 .

[14]  Prasenjit Sengupta,et al.  Second-order state transition for relative motion near perturbed, elliptic orbits , 2007 .

[15]  S. Vadali,et al.  Near-optimal feedback rendezvous in elliptic orbits accounting for nonlinear differential gravity , 2007 .

[16]  Akira Ichikawa,et al.  Graphical generation of periodic orbits of tschauner-hempel equations , 2012 .

[17]  Daero Lee,et al.  Solutions to the Variational Equations for Relative Motion of Satellites , 2007 .

[18]  G. Hill Researches in the Lunar Theory , 1878 .

[19]  Akira Ichikawa,et al.  Satellite Formation and Reconfiguration with Restricted Control Interval , 2010 .

[20]  K. Alfriend,et al.  State Transition Matrix of Relative Motion for the Perturbed Noncircular Reference Orbit , 2003 .

[21]  Daniele Mortari,et al.  An approximate analytical method for short-range impulsive orbit rendezvous using relative Lambert solutions , 2012 .

[22]  Katsuhiko Yamada,et al.  New State Transition Matrix for Formation Flying in J2-Perturbed Elliptic Orbits , 2012 .

[23]  Hexi Baoyin,et al.  Two-Point Boundary Value Problem Solutions to Spacecraft Formation Flying , 2009 .

[24]  Zongli Lin,et al.  Lyapunov Differential Equation Approach to Elliptical Orbital Rendezvous with Constrained Controls , 2011 .

[25]  Jing Li,et al.  Fuel-Optimal Low-Thrust Reconfiguration of Formation- Flying Satellites via Homotopic Approach , 2012 .

[26]  J. P. De Vries,et al.  ELLIPTIC ELEMENTS IN TERMS OF SMALL INCREMENTS OF POSITION AND VELOCITY COMPONENTS , 1963 .

[27]  T. Carter State Transition Matrices for Terminal Rendezvous Studies: Brief Survey and New Example , 1998 .

[28]  R. Melton Time-Explicit Representation of Relative Motion Between Elliptical Orbits , 2000 .

[29]  Shijie Xu,et al.  Approach Guidance with Double-Line-of-Sight Measuring Navigation Constraint for Autonomous Rendezvous , 2011 .

[30]  R. Broucke,et al.  Solution of the Elliptic Rendezvous Problem with the Time as Independent Variable , 2003 .

[31]  Guang-Ren Duan,et al.  Robust H∞ control of spacecraft rendezvous on elliptical orbit , 2012, J. Frankl. Inst..

[32]  Di Zhou,et al.  A solution to two-point boundary value problem for power-limited rendezvous with constant thrust , 2011 .

[33]  A. Ichikawa,et al.  Orbital Rendezvous and Flyaround Based on Null Controllability with Vanishing Energy , 2007 .

[34]  R. Battin An introduction to the mathematics and methods of astrodynamics , 1987 .

[35]  Prasenjit Sengupta,et al.  Periodic relative motion near a keplerian elliptic orbit with nonlinear differential gravity , 2006 .

[36]  Fredrik Nilsson,et al.  PRISMA : an in-orbit test bed for guidance, navigation, and control experiments , 2009 .

[37]  T. Carter New form for the optimal rendezvous equations near a Keplerian orbit , 1990 .

[38]  Gerard Gómez,et al.  Computation of analytical solutions of the relative motion about a Keplerian elliptic orbit , 2012 .

[39]  Kyu-Hong Choi,et al.  Analytical solution to optimal relocation of satellite formation flying in arbitrary elliptic orbits , 2007 .

[40]  Shijie Xu,et al.  Double line-of-sight measuring relative navigation for spacecraft autonomous rendezvous☆ , 2010 .

[41]  H. Yamakawa,et al.  Novel Nonlinear Rendezvous Guidance Scheme Under Constraints on Thrust Direction , 2011 .

[42]  Jeffrey A. Weiss,et al.  Strategies and schemes for rendezvous on geostationary transfer orbit , 1982 .