DNA Origami Route for Nanophotonics

The specificity and simplicity of the Watson–Crick base pair interactions make DNA one of the most versatile construction materials for creating nanoscale structures and devices. Among several DNA-based approaches, the DNA origami technique excels in programmable self-assembly of complex, arbitrary shaped structures with dimensions of hundreds of nanometers. Importantly, DNA origami can be used as templates for assembly of functional nanoscale components into three-dimensional structures with high precision and controlled stoichiometry. This is often beyond the reach of other nanofabrication techniques. In this Perspective, we highlight the capability of the DNA origami technique for realization of novel nanophotonic systems. First, we introduce the basic principles of designing and fabrication of DNA origami structures. Subsequently, we review recent advances of the DNA origami applications in nanoplasmonics, single-molecule and super-resolution fluorescent imaging, as well as hybrid photonic systems. We conclude by outlining the future prospects of the DNA origami technique for advanced nanophotonic systems with tailored functionalities.

[1]  Oleg Gang,et al.  Self-organized architectures from assorted DNA-framed nanoparticles. , 2016, Nature chemistry.

[2]  Tim Liedl,et al.  Sculpting light by arranging optical components with DNA nanostructures , 2017, MRS bulletin.

[3]  Philip Tinnefeld,et al.  Controlled reduction of photobleaching in DNA origami-gold nanoparticle hybrids. , 2014, Nano letters.

[4]  Hao Yan,et al.  Multifactorial modulation of binding and dissociation kinetics on two-dimensional DNA nanostructures. , 2013, Nano letters.

[5]  Björn Högberg,et al.  Purification of functionalized DNA origami nanostructures. , 2015, ACS nano.

[6]  N. Seeman,et al.  Programmable materials and the nature of the DNA bond , 2015, Science.

[7]  Philip Mair,et al.  Programming Light-Harvesting Efficiency Using DNA Origami , 2016, Nano letters.

[8]  P. Nordlander,et al.  Plasmons in strongly coupled metallic nanostructures. , 2011, Chemical reviews.

[9]  Andrew D Ellington,et al.  Aptamers as potential tools for super-resolution microscopy , 2012, Nature Methods.

[10]  Baoquan Ding,et al.  3D plasmonic chiral colloids. , 2014, Nanoscale.

[11]  T. Klar,et al.  Sub-Abbe resolution: from STED microscopy to STED lithography , 2014 .

[12]  Baoquan Ding,et al.  Tunable optical activity of plasmonic dimers assembled by DNA origami. , 2015, Nanoscale.

[13]  Philip Tinnefeld,et al.  Angular modulation of single-molecule fluorescence by gold nanoparticles on DNA origami templates , 2013, Biomimetic Nanotechnology.

[14]  Anatoly V. Zayats,et al.  Self-assembled plasmonic waveguides for excitation of fluorescent nanodiamonds , 2017 .

[15]  P. Tinnefeld,et al.  Strong plasmonic enhancement of single molecule photostability in silver dimer optical antennas , 2018 .

[16]  Giorgio Volpe,et al.  Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna , 2010, Science.

[17]  F. Simmel,et al.  DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response , 2011, Nature.

[18]  Jens Bauer,et al.  "DNA Origami Traffic Lights" with a Split Aptamer Sensor for a Bicolor Fluorescence Readout. , 2017, Nano letters.

[19]  Mikael Käll,et al.  FRET enhancement close to gold nanoparticles positioned in DNA origami constructs. , 2017, Nanoscale.

[20]  Ralf Jungmann,et al.  DNA origami as a nanoscopic ruler for super-resolution microscopy. , 2009, Angewandte Chemie.

[21]  David J. Mooney,et al.  Oligolysine-based coating protects DNA nanostructures from low-salt denaturation and nuclease degradation , 2017, Nature Communications.

[22]  Jeremy J. Baumberg,et al.  Single-molecule strong coupling at room temperature in plasmonic nanocavities , 2016, Nature.

[23]  H. Xin,et al.  Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames. , 2015, Nature nanotechnology.

[24]  Na Liu,et al.  DNA-Nanotechnology-Enabled Chiral Plasmonics: From Static to Dynamic. , 2017, Accounts of chemical research.

[25]  Adrian Keller,et al.  DNA Origami Substrates for Highly Sensitive Surface-Enhanced Raman Scattering , 2013 .

[26]  Hélder A. Santos,et al.  Protein Coating of DNA Nanostructures for Enhanced Stability and Immunocompatibility , 2017, Advanced healthcare materials.

[27]  Hao Yan,et al.  DNA directed self-assembly of anisotropic plasmonic nanostructures. , 2011, Journal of the American Chemical Society.

[28]  R. C. Macridis A review , 1963 .

[29]  Tim Liedl,et al.  DNA origami-templated growth of arbitrarily shaped metal nanoparticles. , 2011, Small.

[30]  Baoquan Ding,et al.  Precise organization of metal nanoparticles on DNA origami template. , 2014, Methods.

[31]  Itamar Willner,et al.  Triplex DNA Nanostructures: From Basic Properties to Applications. , 2017, Angewandte Chemie.

[32]  Baoquan Ding,et al.  Plasmonic Toroidal Metamolecules Assembled by DNA Origami. , 2016, Journal of the American Chemical Society.

[33]  A. Govorov,et al.  Plasmonic circular dichroism of chiral metal nanoparticle assemblies. , 2010, Nano letters.

[34]  Maximilian T. Strauss,et al.  DNA nanotechnology and fluorescence applications. , 2016, Current opinion in biotechnology.

[35]  A Paul Alivisatos,et al.  Transition from isolated to collective modes in plasmonic oligomers. , 2010, Nano letters.

[36]  Tim Liedl,et al.  DNA-Assembled Advanced Plasmonic Architectures. , 2018, Chemical reviews.

[37]  I. Willner,et al.  Chiroplasmonic DNA-based nanostructures , 2017 .

[38]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[39]  D. Lelie,et al.  DNA-guided crystallization of colloidal nanoparticles , 2008, Nature.

[40]  Tim Liedl,et al.  DNA-Assembled Nanoparticle Rings Exhibit Electric and Magnetic Resonances at Visible Frequencies , 2015, Nano letters.

[41]  Tim Liedl,et al.  Single-molecule FRET ruler based on rigid DNA origami blocks. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[42]  Thomas Tørring,et al.  DNA origami: a quantum leap for self-assembly of complex structures. , 2011, Chemical Society reviews.

[43]  Philip Tinnefeld,et al.  Optical Nanoantenna for Single Molecule-Based Detection of Zika Virus Nucleic Acids without Molecular Multiplication. , 2017, Analytical chemistry.

[44]  Tao Zhang,et al.  DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering , 2014, Nature Communications.

[45]  Na Liu,et al.  Selective control of reconfigurable chiral plasmonic metamolecules , 2017, Science Advances.

[46]  A. Nandi,et al.  Nucleic acid based polymer and nanoparticle conjugates: Synthesis, properties and applications , 2017 .

[47]  Stefan Howorka,et al.  Building membrane nanopores. , 2017, Nature nanotechnology.

[48]  Hao Yan,et al.  DNA-templated self-assembly of two-dimensional and periodical gold nanoparticle arrays. , 2006, Angewandte Chemie.

[49]  Baoquan Ding,et al.  DNA Origami Directed Assembly of Gold Bowtie Nanoantennas for Single-Molecule Surface-Enhanced Raman Scattering. , 2018, Angewandte Chemie.

[50]  M. Tokunaga,et al.  Highly inclined thin illumination enables clear single-molecule imaging in cells , 2008, Nature Methods.

[51]  Veikko Linko,et al.  Plasmonic nanostructures through DNA-assisted lithography , 2018, Science Advances.

[52]  Tim Liedl,et al.  Hot spot-mediated non-dissipative and ultrafast plasmon passage , 2017, Nature Physics.

[53]  Shawn M. Douglas,et al.  DNA-nanotube-induced alignment of membrane proteins for NMR structure determination , 2007, Proceedings of the National Academy of Sciences.

[54]  Hao Yan,et al.  Control of Self-Assembly of DNA Tubules Through Integration of Gold Nanoparticles , 2009, Science.

[55]  Harald Giessen,et al.  Chiral plasmonics , 2017, Science Advances.

[56]  Jeremy J. Baumberg,et al.  Gap-Dependent Coupling of Ag–Au Nanoparticle Heterodimers Using DNA Origami-Based Self-Assembly , 2016 .

[57]  Mark Bathe,et al.  A primer to scaffolded DNA origami , 2011, Nature Methods.

[58]  N. Seeman,et al.  A Proximity-Based Programmable DNA Nanoscale Assembly Line , 2010, Nature.

[59]  Paul W K Rothemund,et al.  Optimized assembly and covalent coupling of single-molecule DNA origami nanoarrays. , 2014, ACS nano.

[60]  William L. Hughes,et al.  Nanometrology and super-resolution imaging with DNA , 2017, MRS bulletin.

[61]  M. Bathe,et al.  Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures , 2011, Nucleic acids research.

[62]  Christopher J. Tassone,et al.  FROM SYNTHESIS TO PROPERTIES AND APPLICATIONS , 2013 .

[63]  F. Simmel,et al.  Self-Assembled Active Plasmonic Waveguide with a Peptide-Based Thermomechanical Switch. , 2016, ACS nano.

[64]  Hao Yan,et al.  DNA-origami-directed self-assembly of discrete silver-nanoparticle architectures. , 2010, Angewandte Chemie.

[65]  Samara L. Reck-Peterson,et al.  Tug-of-War in Motor Protein Ensembles Revealed with a Programmable DNA Origami Scaffold , 2012, Science.

[66]  Antti-Pekka Eskelinen,et al.  Assembly of single-walled carbon nanotubes on DNA-origami templates through streptavidin-biotin interaction. , 2011, Small.

[67]  Shawn M. Douglas,et al.  A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads , 2012, Science.

[68]  Qiangbin Wang,et al.  DNA-programmed self-assembly of photonic nanoarchitectures , 2014 .

[69]  Hao Yan,et al.  Gold nanoparticle self-similar chain structure organized by DNA origami. , 2010, Journal of the American Chemical Society.

[70]  Luvena L. Ong,et al.  DNA Brick Crystals with Prescribed Depth , 2014, Nature chemistry.

[71]  Philip Tinnefeld,et al.  Fluorescence and super-resolution standards based on DNA origami , 2012, Nature Methods.

[72]  Nicholas A. W. Bell,et al.  Nanopores formed by DNA origami: A review , 2014, FEBS letters.

[73]  Sebastian Mackowski,et al.  Strong Plasmonic Enhancement of a Single Peridinin-Chlorophyll a-Protein Complex on DNA Origami-Based Optical Antennas. , 2018, ACS nano.

[74]  Peng Yin,et al.  Optical imaging of individual biomolecules in densely packed clusters , 2016 .

[75]  Peng Yin,et al.  Universal Super-Resolution Multiplexing by DNA Exchange. , 2017, Angewandte Chemie.

[76]  Jie Chao,et al.  DNA-based plasmonic nanostructures , 2015 .

[77]  Ianina L. Violi,et al.  Connecting Metallic Nanoparticles by Optical Printing. , 2016, Nano letters.

[78]  Hao Yan,et al.  Single-stranded DNA and RNA origami , 2017, Science.

[79]  Chenxiang Lin,et al.  Recovery of intact DNA nanostructures after agarose gel–based separation , 2011, Nature Methods.

[80]  P. Tinnefeld,et al.  Shifting molecular localization by plasmonic coupling in a single-molecule mirage , 2017, Nature Communications.

[81]  Tim Liedl,et al.  Distance dependence of single-fluorophore quenching by gold nanoparticles studied on DNA origami. , 2012, ACS nano.

[82]  P. Schultz,et al.  Organization of 'nanocrystal molecules' using DNA , 1996, Nature.

[83]  Jeunghoon Lee,et al.  Multiscaffold DNA Origami Nanoparticle Waveguides , 2013, Nano letters.

[84]  Adam H. Marblestone,et al.  Rapid prototyping of 3D DNA-origami shapes with caDNAno , 2009, Nucleic acids research.

[85]  Tao Zhang,et al.  DNA-Based Self-Assembly of Fluorescent Nanodiamonds. , 2015, Journal of the American Chemical Society.

[86]  Yonggang Ke,et al.  Au nanorod helical superstructures with designed chirality. , 2015, Journal of the American Chemical Society.

[87]  V. Linko,et al.  The enabled state of DNA nanotechnology. , 2013, Current opinion in biotechnology.

[88]  Arzhang Ardavan,et al.  Ordering Gold Nanoparticles with DNA Origami Nanoflowers. , 2016, ACS nano.

[89]  Hendrik Dietz,et al.  Efficient Production of Single-Stranded Phage DNA as Scaffolds for DNA Origami , 2015, Nano letters.

[90]  Maximilian T. Strauss,et al.  Super-resolution microscopy with DNA-PAINT , 2017, Nature Protocols.

[91]  L. Novotný,et al.  Antennas for light , 2011 .

[92]  Tim Liedl,et al.  Plasmonic DNA-origami nanoantennas for surface-enhanced Raman spectroscopy. , 2014, Nano letters.

[93]  Huilin Li,et al.  Lattice engineering through nanoparticle-DNA frameworks. , 2016, Nature materials.

[94]  G. Seelig,et al.  Dynamic DNA nanotechnology using strand-displacement reactions. , 2011, Nature chemistry.

[95]  S. Turner,et al.  Real-time DNA sequencing from single polymerase molecules. , 2010, Methods in enzymology.

[96]  Baoquan Ding,et al.  Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures. , 2012, Journal of the American Chemical Society.

[97]  Tim Liedl,et al.  3D DNA Origami Crystals. , 2018, Advanced materials.

[98]  Colin Nuckolls,et al.  Assembly of heterogeneous functional nanomaterials on DNA origami scaffolds. , 2012, Angewandte Chemie.

[99]  Wael Mamdouh,et al.  Single-molecule chemical reactions on DNA origami. , 2010, Nature nanotechnology.

[100]  Philip Tinnefeld,et al.  Single-molecule four-color FRET visualizes energy-transfer paths on DNA origami. , 2011, Journal of the American Chemical Society.

[101]  Hendrik Dietz,et al.  Biotechnological mass production of DNA origami , 2017, Nature.

[102]  Veikko Linko,et al.  Custom-shaped metal nanostructures based on DNA origami silhouettes. , 2015, Nanoscale.

[103]  Silvia Hernández-Ainsa,et al.  DNA origami nanopores: developments, challenges and perspectives. , 2014, Nanoscale.

[104]  S. Gwo,et al.  Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics. , 2016, Chemical Society reviews.

[105]  Michael J. Campolongo,et al.  Building plasmonic nanostructures with DNA. , 2011, Nature nanotechnology.

[106]  Peng Yin,et al.  Casting inorganic structures with DNA molds , 2014, Science.

[107]  H. Pei,et al.  Clicking DNA to gold nanoparticles: poly-adenine-mediated formation of monovalent DNA-gold nanoparticle conjugates with nearly quantitative yield , 2015 .

[108]  Hiroyuki Asanuma,et al.  Light-driven DNA nanomachine with a photoresponsive molecular engine. , 2014, Accounts of chemical research.

[109]  Huilin Li,et al.  Diamond family of nanoparticle superlattices , 2016, Science.

[110]  P. Rothemund,et al.  Engineering and mapping nanocavity emission via precision placement of DNA origami , 2016, Nature.

[111]  Pekka Orponen,et al.  DNA rendering of polyhedral meshes at the nanoscale , 2015, Nature.

[112]  Friedrich C Simmel,et al.  Single molecule characterization of DNA binding and strand displacement reactions on lithographic DNA origami microarrays. , 2014, Nano letters.

[113]  Yan Liu,et al.  DNA nanotechnology for nanophotonic applications. , 2015, Nanoscale.

[114]  Victor Pan,et al.  The Beauty and Utility of DNA Origami , 2017 .

[115]  Philip Tinnefeld,et al.  Fluorescence Enhancement at Docking Sites of DNA-Directed Self-Assembled Nanoantennas , 2012, Science.

[116]  A. Kuzyk,et al.  Reconfigurable 3D plasmonic metamolecules. , 2014, Nature materials.

[117]  Tao Zhang,et al.  Chiral plasmonic DNA nanostructures with switchable circular dichroism , 2013, Nature Communications.

[118]  John Hickey,et al.  Metallization of branched DNA origami for nanoelectronic circuit fabrication. , 2011, ACS nano.

[119]  Hao Yan,et al.  DNA Origami: A Quantum Leap for Self‐Assembly of Complex Structures , 2012 .

[120]  Fei Zhang,et al.  DNA Origami: Scaffolds for Creating Higher Order Structures. , 2017, Chemical reviews.

[121]  Hendrik Dietz,et al.  How We Make DNA Origami , 2017, Chembiochem : a European journal of chemical biology.

[122]  Masayuki Endo,et al.  Single-molecule analysis using DNA origami. , 2012, Angewandte Chemie.

[123]  Chad A Mirkin,et al.  A General Approach to DNA- Programmable Atom Equivalents* , 2020, Spherical Nucleic Acids.

[124]  I. Willner,et al.  DNA Scaffolds for the Dictated Assembly of Left-/Right-Handed Plasmonic Au NP Helices with Programmed Chiro-Optical Properties. , 2016, Journal of the American Chemical Society.

[125]  Philip Tinnefeld,et al.  DNA Origami Nanoantennas with over 5000-fold Fluorescence Enhancement and Single-Molecule Detection at 25 μM. , 2015, Nano letters.

[126]  Hao Yan,et al.  Assembly of multienzyme complexes on DNA nanostructures , 2016, Nature Protocols.

[127]  Dongfang Wang,et al.  A DNA Walker as a Fluorescence Signal Amplifier. , 2017, Nano letters.

[128]  Lukas Novotny,et al.  Optical Antennas , 2009 .

[129]  Stefan Diez,et al.  Toward Self-Assembled Plasmonic Devices: High-Yield Arrangement of Gold Nanoparticles on DNA Origami Templates. , 2016, ACS nano.

[130]  F. Simmel,et al.  Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. , 2010, Nano letters.

[131]  Carlos E. Castro,et al.  DNA origami devices for molecular-scale precision measurements , 2017 .

[132]  Qiao Jiang,et al.  Three-dimensional plasmonic chiral tetramers assembled by DNA origami. , 2013, Nano letters.

[133]  Johannes B. Woehrstein,et al.  Quantitative super-resolution imaging with qPAINT , 2016 .

[134]  A. Kuzyk,et al.  Helical nanostructures based on DNA self-assembly. , 2014, Nanoscale.

[135]  Wenqi Zhu,et al.  Quantum mechanical effects in plasmonic structures with subnanometre gaps , 2016, Nature Communications.

[136]  Philip Tinnefeld,et al.  Synergistic Combination of Unquenching and Plasmonic Fluorescence Enhancement in Fluorogenic Nucleic Acid Hybridization Probes. , 2017, Nano letters.

[137]  Peng Yin,et al.  Submicrometre geometrically encoded fluorescent barcodes self-assembled from DNA. , 2012, Nature chemistry.

[138]  P. Tinnefeld,et al.  Functionalizing large nanoparticles for small gaps in dimer nanoantennas , 2016 .

[139]  Päivi Törmä,et al.  DNA origami as a nanoscale template for protein assembly , 2009, Nanotechnology.

[140]  Mette D. E. Jepsen,et al.  Development of a genetically encodable FRET system using fluorescent RNA aptamers , 2018, Nature Communications.

[141]  Shawn M. Douglas,et al.  Self-assembly of DNA into nanoscale three-dimensional shapes , 2009, Nature.

[142]  Cody W. Geary,et al.  A single-stranded architecture for cotranscriptional folding of RNA nanostructures , 2014, Science.

[143]  J. Storhoff,et al.  A DNA-based method for rationally assembling nanoparticles into macroscopic materials , 1996, Nature.

[144]  J Alexander Liddle,et al.  Quantum dot-DNA origami binding: a single particle, 3D, real-time tracking study. , 2013, Chemical communications.

[145]  Tim Liedl,et al.  Quantitative Single-Molecule Surface-Enhanced Raman Scattering by Optothermal Tuning of DNA Origami-Assembled Plasmonic Nanoantennas. , 2016, ACS nano.

[146]  W. B. Knowlton,et al.  Programmable Periodicity of Quantum Dot Arrays with DNA Origami Nanotubes , 2010, Nano letters.

[147]  A Paul Alivisatos,et al.  Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs. , 2006, Nano letters.

[148]  Jiashu Sun,et al.  Stimulus-Responsive Plasmonic Chiral Signals of Gold Nanorods Organized on DNA Origami. , 2017, Nano letters.

[149]  C. Mirkin,et al.  Templated techniques for the synthesis and assembly of plasmonic nanostructures. , 2011, Chemical reviews.

[150]  Tim Liedl,et al.  Directional Photonic Wire Mediated by Homo-Förster Resonance Energy Transfer on a DNA Origami Platform. , 2017, ACS nano.

[151]  Shawn M. Douglas,et al.  Folding DNA into Twisted and Curved Nanoscale Shapes , 2009, Science.

[152]  Suliana Manley,et al.  A near-infrared fluorophore for live-cell super-resolution microscopy of cellular proteins. , 2013, Nature chemistry.

[153]  Baptiste Auguié,et al.  From Individual to Collective Chirality in Metal Nanoparticles* , 2011, Colloidal Synthesis of Plasmonic Nanometals.

[154]  Zongfu Yu,et al.  Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna , 2009 .

[155]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[156]  P. Tinnefeld,et al.  DNA origami–based standards for quantitative fluorescence microscopy , 2014, Nature Protocols.

[157]  B. Chichkov,et al.  All-dielectric nanophotonics: the quest for better materials and fabrication techniques , 2017, 1702.00677.

[158]  Weihai Ni,et al.  Bifacial DNA origami-directed discrete, three-dimensional, anisotropic plasmonic nanoarchitectures with tailored optical chirality. , 2013, Journal of the American Chemical Society.

[159]  Peng Yin,et al.  Sub–100-nm metafluorophores with digitally tunable optical properties self-assembled from DNA , 2017, Science Advances.

[160]  Chenxiang Lin,et al.  Purification of DNA-origami nanostructures by rate-zonal centrifugation , 2012, Nucleic acids research.

[161]  Friedrich C Simmel,et al.  Orthogonal Protein Assembly on DNA Nanostructures Using Relaxases , 2016, Angewandte Chemie.

[162]  Baoquan Ding,et al.  Reconfigurable Three-Dimensional Gold Nanorod Plasmonic Nanostructures Organized on DNA Origami Tripod. , 2017, ACS nano.

[163]  N. Seeman,et al.  DNA-Templated Self-Assembly of Metallic Nanocomponent Arrays on a Surface , 2004 .

[164]  H. Dietz,et al.  Dynamic DNA devices and assemblies formed by shape-complementary, non–base pairing 3D components , 2015, Science.

[165]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.

[166]  Hao Yan,et al.  Toward reliable gold nanoparticle patterning on self-assembled DNA nanoscaffold. , 2008, Journal of the American Chemical Society.

[167]  P. Rothemund,et al.  Programmable molecular recognition based on the geometry of DNA nanostructures. , 2011, Nature chemistry.

[168]  Faisal A. Aldaye,et al.  Assembling Materials with DNA as the Guide , 2008, Science.

[169]  Hao Yan,et al.  DNA-directed artificial light-harvesting antenna. , 2011, Journal of the American Chemical Society.

[170]  K. Jechoutek From Static to Dynamic , 2018 .

[171]  M. Komiyama,et al.  Nanomechanical DNA origami 'single-molecule beacons' directly imaged by atomic force microscopy , 2011, Nature communications.

[172]  P. Tinnefeld,et al.  Broadband Fluorescence Enhancement with Self-Assembled Silver Nanoparticle Optical Antennas. , 2017, ACS nano.

[173]  Johannes B. Woehrstein,et al.  Polyhedra Self-Assembled from DNA Tripods and Characterized with 3D DNA-PAINT , 2014, Science.

[174]  P. Tinnefeld,et al.  Quantum yield and excitation rate of single molecules close to metallic nanostructures , 2014, Nature Communications.

[175]  W. Chiu,et al.  Designer nanoscale DNA assemblies programmed from the top down , 2016, Science.

[176]  Ralf Seidel,et al.  Shape-controlled synthesis of gold nanostructures using DNA origami molds. , 2014, Nano letters.

[177]  Veikko Linko,et al.  Evolution of Structural DNA Nanotechnology , 2018, Advanced materials.

[178]  Antti Lassila,et al.  DNA origami structures as calibration standards for nanometrology , 2017 .

[179]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[180]  T. LaBean,et al.  Connecting the nanodots: programmable nanofabrication of fused metal shapes on DNA templates. , 2011, Nano letters.

[181]  Federico Capasso,et al.  Self-Assembled Plasmonic Nanoparticle Clusters , 2010, Science.

[182]  T. G. Martin,et al.  Facile and Scalable Preparation of Pure and Dense DNA Origami Solutions , 2014, Angewandte Chemie.

[183]  Arun Richard Chandrasekaran,et al.  Programmable DNA scaffolds for spatially-ordered protein assembly. , 2016, Nanoscale.

[184]  Kersten S. Rabe,et al.  Orthogonal protein decoration of DNA origami. , 2010, Angewandte Chemie.

[185]  Friedrich C. Simmel,et al.  DNA origami – art, science, and engineering , 2012 .

[186]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[187]  Mark R. Servos,et al.  Instantaneous and quantitative functionalization of gold nanoparticles with thiolated DNA using a pH-assisted and surfactant-free route. , 2012, Journal of the American Chemical Society.

[188]  Veikko Linko,et al.  DNA Nanostructures as Smart Drug-Delivery Vehicles and Molecular Devices. , 2015, Trends in biotechnology.

[189]  Muneesh Tewari,et al.  Kinetic fingerprinting to identify and count single nucleic acids , 2015, Nature Biotechnology.

[190]  Sung Yong Park,et al.  DNA-programmable nanoparticle crystallization , 2008, Nature.

[191]  Luis M Liz-Marzán,et al.  Molecular thinking for nanoplasmonic design. , 2012, ACS nano.

[192]  Marco Lazzarino,et al.  Plasmon resonance tuning using DNA origami actuation. , 2015, Chemical communications.

[193]  Friedrich C Simmel,et al.  Nucleic acid based molecular devices. , 2011, Angewandte Chemie.

[194]  Hao Yan,et al.  Super-resolution fingerprinting detects chemical reactions and idiosyncrasies of single DNA pegboards. , 2013, Nano letters.

[195]  Tao Zhang,et al.  Hierarchical assembly of metal nanoparticles, quantum dots and organic dyes using DNA origami scaffolds. , 2013, Nature nanotechnology.

[196]  Johannes B. Woehrstein,et al.  Multiplexed 3D Cellular Super-Resolution Imaging with DNA-PAINT and Exchange-PAINT , 2014, Nature Methods.

[197]  Philip Tinnefeld,et al.  Single-molecule positioning in zeromode waveguides by DNA origami nanoadapters. , 2014, Nano letters.

[198]  FRET efficiency and antenna effect in multi-color DNA origami-based light harvesting systems , 2017 .

[199]  Na Liu,et al.  Optically Resolving the Dynamic Walking of a Plasmonic Walker Couple. , 2015, Nano letters.

[200]  Adrian Keller,et al.  Molecular Processes Studied at a Single-Molecule Level Using DNA Origami Nanostructures and Atomic Force Microscopy , 2014, Molecules.

[201]  A. Femius Koenderink,et al.  Single-Photon Nanoantennas , 2017, ACS photonics.

[202]  Na Liu,et al.  A light-driven three-dimensional plasmonic nanosystem that translates molecular motion into reversible chiroptical function , 2016, Nature Communications.

[203]  H. Ewers,et al.  A simple, versatile method for GFP-based super-resolution microscopy via nanobodies , 2012, Nature Methods.

[204]  Ri-sheng Wang,et al.  Self-Assembly of Heterogeneously Shaped Nanoparticles into Plasmonic Metamolecules on DNA Origami. , 2017, Chemistry.

[205]  Jennifer N Cha,et al.  Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami. , 2010, Nature nanotechnology.

[206]  Joseph Nichols,et al.  Electron Microscopic Visualization of Protein Assemblies on Flattened DNA Origami. , 2015, ACS nano.

[207]  Michael Matthies,et al.  Block Copolymer Micellization as a Protection Strategy for DNA Origami. , 2017, Angewandte Chemie.

[208]  Xue Han,et al.  Light-Triggered Release of Bioactive Molecules from DNA Nanostructures. , 2016, Nano letters.

[209]  N. Seeman DNA in a material world , 2003, Nature.

[210]  Mark Bathe,et al.  DNA Nanotechnology: A foundation for Programmable Nanoscale Materials , 2017 .

[211]  A. van der Vaart,et al.  Photophysical and dynamical properties of doubly linked Cy3-DNA constructs. , 2014, The journal of physical chemistry. B.

[212]  Na Liu,et al.  A plasmonic nanorod that walks on DNA origami , 2015, Nature Communications.