Photocatalytic and Piezocatalytic Properties of h-NbP and h-NbN Monolayers for Green Hydrogen Production: Insight from Density Functional Theory Calculations

[1]  Yuanhua Lin,et al.  Mechanically Induced Highly Efficient Hydrogen Evolution from Water over Piezoelectric SnSe nanosheets. , 2022, Small.

[2]  Deepansh Sharma,et al.  Visible light activated V2O5/rGO nanocomposite for enhanced photodegradation of methylene blue dye and photoelectrochemical water splitting , 2022, Inorganic Chemistry Communications.

[3]  R. Sibatov,et al.  Enhanced properties of covalently coupled borophene-graphene layers through fluorination and hydrogenation , 2021 .

[4]  Vinay Gupta,et al.  Investigation of optical non-linearity of lead-free ferroelectric potassium sodium niobate (K0.35Na0.65NbO3) thin films via two-wave mixing phenomenon , 2021 .

[5]  J. Xia,et al.  Two-Dimensional In2X2X' (X and X' = S, Se, and Te) Monolayers with an Intrinsic Electric Field for High-Performance Photocatalytic and Piezoelectric Applications. , 2021, ACS applied materials & interfaces.

[6]  Jiaguo Yu,et al.  Tuning the strength of built-in electric field in 2D/2D g-C3N4/SnS2 and g-C3N4/ZrS2 S-scheme heterojunctions by nonmetal doping , 2021 .

[7]  Yihe Zhang,et al.  Piezocatalysis and Piezo‐Photocatalysis: Catalysts Classification and Modification Strategy, Reaction Mechanism, and Practical Application , 2020, Advanced Functional Materials.

[8]  Huajun Sun,et al.  Significantly enhanced piezo-photocatalytic capability in BaTiO3 nanowires for degrading organic dye , 2020, Journal of Materiomics.

[9]  S. Sinnott,et al.  Density Functional Theory Study of Epitaxially Strained Monolayer Transition Metal Chalcogenides for Piezoelectricity Generation , 2020 .

[10]  K. Domen,et al.  Oxysulfide photocatalyst for visible-light-driven overall water splitting , 2019, Nature Materials.

[11]  Zhiqun Lin,et al.  Enabling PIEZOpotential in PIEZOelectric Semiconductors for Enhanced Catalytic Activities. , 2019, Angewandte Chemie.

[12]  Jin Zhang On the piezopotential properties of two-dimensional materials , 2019, Nano Energy.

[13]  Y. Gong,et al.  Phase and interlayer effect of transition metal dichalcogenide cocatalyst toward photocatalytic hydrogen evolution: The case of MoSe2 , 2019, Applied Catalysis B: Environmental.

[14]  Xinchen Wang,et al.  Crystalline Carbon Nitride Semiconductors for Photocatalytic Water Splitting , 2019, Angewandte Chemie.

[15]  W. Shangguan,et al.  A review on bismuth-based composite oxides for photocatalytic hydrogen generation , 2019, International Journal of Hydrogen Energy.

[16]  G. Saratale,et al.  Zinc oxide superstructures: Recent synthesis approaches and application for hydrogen production via photoelectrochemical water splitting , 2019, International Journal of Hydrogen Energy.

[17]  Wei Hu,et al.  Intrinsic Electric Fields in Two-dimensional Materials Boost the Solar-to-Hydrogen Efficiency for Photocatalytic Water Splitting. , 2018, Nano letters.

[18]  Z. Mi,et al.  Wafer-scale synthesis of monolayer WSe2: A multi-functional photocatalyst for efficient overall pure water splitting , 2018, Nano Energy.

[19]  Jinzhan Su,et al.  Stability and Performance of Sulfide-, Nitride-, and Phosphide-Based Electrodes for Photocatalytic Solar Water Splitting. , 2017, The journal of physical chemistry letters.

[20]  V. Shenoy,et al.  Large In-Plane and Vertical Piezoelectricity in Janus Transition Metal Dichalchogenides. , 2017, ACS Nano.

[21]  O. Matz,et al.  Periodic DFT Study of Rutile IrO2: Surface Reactivity and Catechol Adsorption , 2017 .

[22]  Younes Abghoui,et al.  Onset potentials for different reaction mechanisms of nitrogen activation to ammonia on transition metal nitride electro-catalysts , 2017 .

[23]  Jijun Zhao,et al.  Enhanced piezoelectric effect in Janus group-III chalcogenide monolayers , 2017 .

[24]  D. Mandrus,et al.  Single Crystal Growth, Resistivity, and Electronic Structure of the Weyl Semimetals NbP and TaP , 2016 .

[25]  S. E. Hosseini,et al.  Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development , 2016 .

[26]  S. Saxena,et al.  Hydrogen generation via photoelectrochemical water splitting using chemically exfoliated MoS2 layers , 2016 .

[27]  U. Waghmare,et al.  Two-Dimensional Rectangular and Honeycomb Lattices of NbN: Emergence of Piezoelectric and Photocatalytic Properties at Nanoscale. , 2016, Nano letters.

[28]  Yun Wang,et al.  Fabrication of Two-Dimensional Lateral Heterostructures of WS2 /WO3 ⋅H2 O Through Selective Oxidation of Monolayer WS2. , 2015, Angewandte Chemie.

[29]  Richard G Hennig,et al.  Ab Initio Prediction of Piezoelectricity in Two-Dimensional Materials. , 2015, ACS nano.

[30]  R. Hennig,et al.  Computational Screening of 2D Materials for Photocatalysis. , 2015, The journal of physical chemistry letters.

[31]  Hongwei Zhu,et al.  Two-dimensional MoS2: Properties, preparation, and applications , 2015 .

[32]  K. Srinivasu,et al.  Porous Graphitic Carbon Nitride: A Possible Metal-free Photocatalyst for Water Splitting , 2014 .

[33]  M. Zwijnenburg,et al.  Carbon Nitride Photocatalysts for Water Splitting: A Computational Perspective , 2014 .

[34]  Xudong Wang,et al.  Fundamental Analysis of Piezocatalysis Process on the Surfaces of Strained Piezoelectric Materials , 2013, Scientific Reports.

[35]  Erwin M. Sabio,et al.  Photocatalytic water oxidation with nonsensitized IrO2 nanocrystals under visible and UV light. , 2011, Journal of the American Chemical Society.

[36]  John Parthenios,et al.  Subjecting a graphene monolayer to tension and compression. , 2009, Small.

[37]  K. Domen,et al.  Zinc Germanium Oxynitride: Influence of the Preparation Method on the Photocatalytic Properties for Overall Water Splitting , 2009 .

[38]  Andreas Züttel,et al.  Hydrogen: the future energy carrier , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[39]  W. Lubitz,et al.  Hydrogen: an overview. , 2007, Chemical reviews.

[40]  K. Domen,et al.  Photocatalytic overall water splitting on gallium nitride powder , 2007 .

[41]  K. Domen,et al.  Photocatalytic Properties of RuO2-Loaded β-Ge3N4 for Overall Water Splitting , 2007 .

[42]  John A. Turner,et al.  Sustainable Hydrogen Production , 2004, Science.

[43]  Charles Surya,et al.  Piezoelectric coefficient of aluminum nitride and gallium nitride , 2000 .

[44]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[45]  Vinay Gupta,et al.  Optical properties of lead- free ferroelectric potassium sodium niobate (KxNa1-xNbO3) thin films , 2019, Materials Today: Proceedings.