A fast mesh parameterization algorithm based on 4-point interpolatory subdivision

In this paper we present a novel fast mesh parameterization algorithm based on subdivision scheme. First, an algorithm of approximating a given triangular mesh by the 4-point interpolatory subdivision is proposed, then a mesh parameterization method is developed based on the subdivision surface approximation algorithm. The novel mesh parameterization method is a generalization of the chordal parameterization to surface case, and it is more computationally efficient than previous methods because it obviates any computation of linear system of equations. Some numerical experiments show the efficiency of the novel algorithm.

[1]  Zhixun Su,et al.  The Initial Value Problem in Triangular Mesh Parameterization , 2008, CSC.

[2]  Nira Dyn,et al.  A 4-point interpolatory subdivision scheme for curve design , 1987, Comput. Aided Geom. Des..

[3]  Tony DeRose,et al.  Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.

[4]  Michael S. Floater,et al.  Parametrization and smooth approximation of surface triangulations , 1997, Comput. Aided Geom. Des..

[5]  M. Floater,et al.  Parameterization for Curve Interpolation , 2006 .

[6]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[7]  S. Yau,et al.  Global conformal surface parameterization , 2003 .

[8]  Serena Morigi,et al.  Feature-sensitive parameterization of polygonal meshes , 2009, Appl. Math. Comput..

[9]  Hiromasa Suzuki,et al.  Subdivision surface fitting to a range of points , 1999, Proceedings. Seventh Pacific Conference on Computer Graphics and Applications (Cat. No.PR00293).

[10]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[11]  Tony DeRose,et al.  Piecewise smooth surface reconstruction , 1994, SIGGRAPH.

[12]  Touradj Ebrahimi,et al.  MESH: measuring errors between surfaces using the Hausdorff distance , 2002, Proceedings. IEEE International Conference on Multimedia and Expo.

[13]  Zhigeng Pan,et al.  A direct approach for subdivision surface fitting from a dense triangle mesh , 2004, Comput. Aided Des..

[14]  M. Floater Mean value coordinates , 2003, Computer Aided Geometric Design.

[15]  Michael S. Floater,et al.  One-to-one piecewise linear mappings over triangulations , 2003, Math. Comput..

[16]  Leif Kobbelt,et al.  Optimization methods for scattered data approximation with subdivision surfaces , 2005, Graph. Model..

[17]  Joe Warren,et al.  Subdivision Methods for Geometric Design: A Constructive Approach , 2001 .