Bridging the Rubicon: phylogenetic analysis reveals repeated colonizations of marine and fresh waters by thalassiosiroid diatoms.

Salinity imposes a significant barrier to the distribution of many organisms, including diatoms. Diatoms are ancestrally marine, and the number of times they have independently colonized fresh waters and the physiological adaptations that facilitated these transitions remain outstanding questions in diatom evolution. The colonization of fresh waters by diatoms has been compared to "crossing the Rubicon," implying that successful colonization events are rare, irreversible, and lead to substantial species diversification. To test these hypotheses, we reconstructed the phylogeny of Thalassiosirales, a diatom lineage with high diversity in both marine and fresh waters. We collected approximately 5.3kb of DNA sequence data from the nuclear (SSU and partial LSU rDNA) and chloroplast genomes (psbC and rbcL) and reconstructed the phylogeny using parsimony and Bayesian methods. Alternative topology tests strongly reject all previous colonization hypotheses, including monophyly of the predominantly freshwater Stephanodiscaceae. Results showed at least three independent colonizations of fresh waters, and whereas previous accounts of freshwater-to-marine transitions have been discounted, these results provide compelling evidence for as many as three independent re-colonizations of the marine habitat, two of which led to speciation events. This study adds valuable phylogenetic context to previous debate about the nature of the salinity barrier in diatoms and provides compelling evidence that, at least for Thalassiosirales, the salinity barrier might be less formidable than previously thought.

[1]  Y. Tanimura FOSSIL MARINE PLICATED THALASSIOSIRA: TAXONOMY AND AN IDEA ON PHYLOGENY , 1996 .

[2]  G. Fryxell,et al.  THE MARINE DIATOM THALASSIOSIRA OESTRUPII: STRUCTURE, TAXONOMY AND DISTRIBUTION , 1980 .

[3]  P. Falkowski,et al.  Biogeochemical Controls and Feedbacks on Ocean Primary Production , 1998, Science.

[4]  G. Hasle Some freshwater and brackish water species of the diatom genus Thalassiosira Cleve , 1978 .

[5]  Alexei J Drummond,et al.  Choosing appropriate substitution models for the phylogenetic analysis of protein-coding sequences. , 2006, Molecular biology and evolution.

[6]  Andrew J. Alverson,et al.  INTRAGENOMIC NUCLEOTIDE POLYMORPHISM AMONG SMALL SUBUNIT (18S) RDNA PARALOGS IN THE DIATOM GENUS SKELETONEMA (BACILLARIOPHYTA) 1 , 2005 .

[7]  M. Sogin,et al.  The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. , 1988, Gene.

[8]  L. Aarssen,et al.  Environmental specialists: their prevalence and their influence on community-similarity analyses , 2005 .

[9]  W. Herth The site of beta-chitin fibril formation in centric diatoms. II. The chitin-forming cytoplasmic structures. , 1979, Journal of ultrastructure research.

[10]  C. Tomas,et al.  Identifying marine phytoplankton , 1997 .

[11]  Andrew J. Alverson,et al.  THE EVOLUTION OF ELONGATE SHAPE IN DIATOMS 1 , 2006 .

[12]  T. Buckley,et al.  Model misspecification and probabilistic tests of topology: evidence from empirical data sets. , 2002, Systematic biology.

[13]  R. Andersen,et al.  Biology and systematics of heterokont and haptophyte algae. , 2004, American journal of botany.

[14]  W. Smith,et al.  Culture of Marine Invertebrate Animals , 1975, Springer US.

[15]  M. Pagel The Maximum Likelihood Approach to Reconstructing Ancestral Character States of Discrete Characters on Phylogenies , 1999 .

[16]  C. Lange,et al.  Freshwater and brackish water Thalassiosira (Bacillariophyceae): taxa with tangentially undulated valves , 1989 .

[17]  J. Wiegmann,et al.  The chemistry of silica. Solubility, polymerization, colloid and surface properties, and biochemistry. Von RALPH K. ILER. New York/Chichester/Brisbane/Toronto: John Wiley & Sons 1979. XXIV, 866 S., Lwd., £ 39.50 , 1980 .

[18]  R. Ross,et al.  Proceedings of the Sixth Symposium on Recent and Fossil Diatoms, Budapest, September 1-5, 1980 : taxonomy, morphology, ecology, biology , 1981 .

[19]  D. M. Nelson,et al.  Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation , 1995 .

[20]  M. Julius,et al.  Cladistic analysis of plicated Thalassiosira (Bacillariophyceae) , 2001 .

[21]  E. Theriot,et al.  PHYLOGENETIC SYSTEMATICS AS A GUIDE TO UNDERSTANDING FEATURES AND POTENTIAL MORPHOLOGICAL CHARACTERS OF THE CENTRIC DIATOM FAMILY THALASSIOSIRACEAE , 1994 .

[22]  F. E. Fritsch The structure and reproduction of the Algae , 1935 .

[23]  H. Birks,et al.  How many freshwater diatoms are pH specialists? A response to Pither & Aarssen (2005). , 2006, Ecology letters.

[24]  R. Guillard,et al.  Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. , 1962, Canadian journal of microbiology.

[25]  D. Anderson,et al.  IDENTIFICATION OF GROUP‐ AND STRAIN‐SPECIFIC GENETIC MARKERS FOR GLOBALLY DISTRIBUTED ALEXANDRIUM (DINOPHYCEAE). II. SEQUENCE ANALYSIS OF A FRAGMENT OF THE LSU rRNA GENE 1 , 1994 .

[26]  A. Knoll,et al.  Evolutionary Trajectories and Biogeochemical Impacts of Marine Eukaryotic Phytoplankton , 2004 .

[27]  A. von Haeseler,et al.  A stochastic model for the evolution of autocorrelated DNA sequences. , 1994, Molecular phylogenetics and evolution.

[28]  R. Lowe COMPARATIVE ULTRASTRUCTURE OF THE VALVES OF SOME CYCLOTELLA SPECIES (BACILLARIOPHYCEAE) 1 , 1975 .

[29]  R. Guillard,et al.  Culture of Phytoplankton for Feeding Marine Invertebrates , 1975 .

[30]  W. Barthlott,et al.  The site of beta-chitin fibril formation in centric diatoms. I. Pores and fibril formation. , 1979, Journal of ultrastructure research.

[31]  M. V. Lebour The Planktonic Diatoms of Northern Seas , 1930, Nature.

[32]  B. Beszteri,et al.  Ribosomal DNA sequence variation among sympatric strains of the Cyclotella meneghiniana complex (Bacillariophyceae) reveals cryptic diversity. , 2005, Protist.

[33]  A. Walsby,et al.  The form resistance of chitan fibres attached to the cells of Thalassiosira fluviatilis Hustedt , 1977 .

[34]  D. Werner Introduction with a note on taxonomy , 1977 .

[35]  J. Randerson,et al.  Primary production of the biosphere: integrating terrestrial and oceanic components , 1998, Science.

[36]  Andrew J. Alverson,et al.  Comments on recent progress toward reconstructing the diatom phylogeny. , 2005, Journal of nanoscience and nanotechnology.

[37]  S. M. Edgar,et al.  PHYLOGENY OF AULACOSEIRA (BACILLARIOPHYTA) BASED ON MOLECULES AND MORPHOLOGY 1 , 2004 .

[38]  G. Hasle,et al.  Thalassiosiropsis, a new diatom genus from the fossil records , 1985 .

[39]  Christian Hennig,et al.  Biotic element analysis in biogeography. , 2003, Systematic biology.

[40]  Andrew J. Alverson,et al.  CELL WALL MORPHOLOGY AND SYSTEMATIC IMPORTANCE OF THALASSIOSIRA RITSCHERI (HUSTEDT) HASLE, WITH A DESCRIPTION OF SHIONODISCUS GEN. NOV. , 2006 .

[41]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[42]  D. Schluter,et al.  LIKELIHOOD OF ANCESTOR STATES IN ADAPTIVE RADIATION , 1997, Evolution; international journal of organic evolution.

[43]  E. Stoermer,et al.  Thalassiosira baltica (Grunow) Ostenfeld (Bacillariophyta), a new exotic species in the Great Lakes , 2000 .

[44]  P. Falkowski,et al.  Photosynthetic rates derived from satellite‐based chlorophyll concentration , 1997 .

[45]  G. Fryxell,et al.  The genus Thalassiosira: species with internal extensions of the strutted processes , 1979 .

[46]  T. Reeder A phylogeny of the Australian Sphenomorphus group (Scincidae: Squamata) and the phylogenetic placement of the crocodile skinks (Tribolonotus): Bayesian approaches to assessing congruence and obtaining confidence in maximum likelihood inferred relationships. , 2003, Molecular phylogenetics and evolution.

[47]  C. Weber A NEW FRESHWATER CENTRIC DIATOM MICROSIPHONA POTAMOS GEN. ET SP. NOV. 1 , 1970 .

[48]  L. Medlin,et al.  Evolution of the diatoms (Bacillariophyta) III. Molecular evidence for the origin of the Thalassiosirales , 1996 .

[49]  D. M. Nelson,et al.  The Silica Balance in the World Ocean: A Reestimate , 1995, Science.

[50]  Dietrich Werner,et al.  The Biology of diatoms , 1977 .

[51]  W. Herth A special chitin-fibril-synthesizing apparatus in the centric diatom Cyclotella , 1978, Naturwissenschaften.

[52]  V. Houk,et al.  THE STELLIGEROID TAXA OF THE GENUS CYCLOTELLA (KÜTZING) BRÉBISSON (BACILLARIOPHYCEAE) AND THEIR TRANSFER INTO THE NEW GENUS DISCOSTELLA GEN. NOV. , 2004 .

[53]  A. Rodrigo,et al.  Likelihood-based tests of topologies in phylogenetics. , 2000, Systematic biology.

[54]  Joan D. Ferraris,et al.  Molecular Zoology: Advances, Strategies, and Protocols , 1997 .

[55]  David G. Mann,et al.  Evolution of the diatoms: insights from fossil, biological and molecular data , 2006 .

[56]  David G. Mann,et al.  Diatoms: Biology and Morphology of the Genera , 1990 .

[57]  D. Kreeger,et al.  COMBO: a defined freshwater culture medium for algae and zooplankton , 1998, Hydrobiologia.

[58]  James C. Wilgenbusch,et al.  AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics , 2008, Bioinform..

[59]  R. Andersen,et al.  A MOLECULAR PHYLOGENY OF THE HETEROKONT ALGAE BASED ON ANALYSES OF CHLOROPLAST‐ENCODED rbcL SEQUENCE DATA 1 , 1997 .

[60]  I. Kaczmarska,et al.  MOLECULAR PHYLOGENY OF SELECTED MEMBERS OF THE ORDER THALASSIOSIRALES (BACILLARIOPHYTA) AND EVOLUTION OF THE FULTOPORTULA 1 , 2006 .

[61]  R. Iler The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica , 1979 .

[62]  Mark Hildebrand,et al.  SILICON METABOLISM IN DIATOMS: IMPLICATIONS FOR GROWTH  , 2000 .

[63]  J. Huelsenbeck,et al.  Bayesian phylogenetic analysis of combined data. , 2004, Systematic biology.

[64]  E. Theriot,et al.  Neogene and Quaternary lacustrine diatom biochronology, Western USA , 1987 .