Effect of phosphorylation on alpha B-crystallin: differences in stability, subunit exchange and chaperone activity of homo and mixed oligomers of alpha B-crystallin and its phosphorylation-mimicking mutant.

[1]  G. Weber,et al.  Dimer formation from 1-anilino-8-naphthalenesulfonate catalyzed by bovine serum albumin. Fluorescent molecule with exceptional binding properties , 1969 .

[2]  L. J. Kaplan,et al.  The structure of chromatin reconstituted with phosphorylated H1. Circular dichroism and thermal denaturation studies. , 1984, The Journal of biological chemistry.

[3]  J. Sredy,et al.  cAMP-dependent phosphorylation of bovine lens alpha-crystallin. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[4]  L. Berliner,et al.  4,4'-Bis[8-(phenylamino)naphthalene-1-sulfonate] binding to human thrombins: a sensitive exo site fluorescent affinity probe. , 1985, Biochemistry.

[5]  A. Spector,et al.  Definition and comparison of the phosphorylation sites of the A and B chains of bovine alpha-crystallin. , 1988, Experimental eye research.

[6]  W. D. de Jong,et al.  The in vivo phosphorylation sites of bovine αB‐crystallin , 1989 .

[7]  M. Hosokawa,et al.  Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye, thioflavin T1. , 1989, Analytical biochemistry.

[8]  R. Siezen,et al.  A dynamic quaternary structure of bovine alpha-crystallin as indicated from intermolecular exchange of subunits. , 1990, Biochemistry.

[9]  B. Raman,et al.  Chaperone-like activity and quaternary structure of alpha-crystallin. , 1994, The Journal of biological chemistry.

[10]  T. Ramakrishna,et al.  Temperature dependent chaperone‐like activity of alpha‐crystallin , 1995, FEBS letters.

[11]  C. Pace,et al.  How to measure and predict the molar absorption coefficient of a protein , 1995, Protein science : a publication of the Protein Society.

[12]  F. Franconi,et al.  Alpha B crystallin is constitutively expressed in cultures of bovine articular chondrocytes. , 1995, Biochemical and biophysical research communications.

[13]  Wang Keyang,et al.  Phosphorylation of α-crystallin in rat lenses is stimulated by H2O2 but phosphorylation has no effect on chaperone activity , 1995 .

[14]  W. Surewicz,et al.  Temperature‐induced exposure of hydrophobic surfaces and its effect on the chaperone activity of α‐crystallin , 1995, FEBS letters.

[15]  J. Buchner,et al.  Transient Interaction of Hsp90 with Early Unfolding Intermediates of Citrate Synthase , 1995, The Journal of Biological Chemistry.

[16]  Jean B. Smith,et al.  Letter to the Editors: Identification of Possible Regions of Chaperone Activity in Lens α-Crystallin , 1996 .

[17]  B. Raman,et al.  Chaperone-like Activity and Temperature-induced Structural Changes of α-Crystallin* , 1997, The Journal of Biological Chemistry.

[18]  H. Shinoda,et al.  Effect of heat-induced structural perturbation of secondary and tertiary structures on the chaperone activity of alpha-crystallin. , 1997, Biochemical and biophysical research communications.

[19]  C. Vinson,et al.  Phosphorylation destabilizes α-helices , 1997, Nature Structural Biology.

[20]  H. Nakayama,et al.  Phosphorylation of αB-Crystallin in Response to Various Types of Stress* , 1997, The Journal of Biological Chemistry.

[21]  M. Bova,et al.  Subunit Exchange of αA-Crystallin* , 1997, The Journal of Biological Chemistry.

[22]  M. Portier,et al.  AlphaB-crystallin interacts with intermediate filaments in response to stress. , 1997, Journal of cell science.

[23]  D. Borchman,et al.  Temperature induced structural changes of beta-crystallin and sphingomyelin binding. , 1998, Experimental eye research.

[24]  S. Saga,et al.  Phosphorylation of αB-crystallin in Mitotic Cells and Identification of Enzymatic Activities Responsible for Phosphorylation* , 1998, The Journal of Biological Chemistry.

[25]  T. Sun,et al.  Subunit exchange of lens α‐crystallin: a fluorescence energy transfer study with the fluorescent labeled αA‐crystallin mutant W9F as a probe , 1998 .

[26]  W. Schaper,et al.  Ischemia-induced phosphorylation and translocation of stress protein αB-crystallin to Z lines of myocardium. , 1998, American journal of physiology. Heart and circulatory physiology.

[27]  T. Ramakrishna,et al.  Structural and Functional Consequences of the Mutation of a Conserved Arginine Residue in αA and αB Crystallins* , 1999, The Journal of Biological Chemistry.

[28]  G. Drewes,et al.  Phosphorylation of MAP2c and MAP4 by MARK kinases leads to the destabilization of microtubules in cells. , 1999, Cell motility and the cytoskeleton.

[29]  M. Bova,et al.  Subunit Exchange of Small Heat Shock Proteins , 2000, The Journal of Biological Chemistry.

[30]  S. Datta,et al.  Packing-induced Conformational and Functional Changes in the Subunits of α-Crystallin* , 2000, The Journal of Biological Chemistry.

[31]  W. Surewicz,et al.  Temperature-dependent Chaperone Activity and Structural Properties of Human αA- and αB-crystallins* , 2000, The Journal of Biological Chemistry.

[32]  Kanefusa Kato,et al.  Phosphorylation-induced Change of the Oligomerization State of αB-crystallin* , 2001, The Journal of Biological Chemistry.

[33]  J. Carver,et al.  The Molecular Chaperone, α-Crystallin, Inhibits Amyloid Formation by Apolipoprotein C-II* , 2001, The Journal of Biological Chemistry.

[34]  M. Bova,et al.  Subunit Exchange, Conformational Stability, and Chaperone-like Function of the Small Heat Shock Protein 16.5 fromMethanococcus jannaschii * , 2002, The Journal of Biological Chemistry.

[35]  Jeff Kuret,et al.  Rapid Anionic Micelle-mediated α-Synuclein Fibrillization in Vitro* , 2003, Journal of Biological Chemistry.

[36]  V. Srinivas,et al.  Structural perturbation and enhancement of the chaperone‐like activity of α‐crystallin by arginine hydrochloride , 2003, Protein science : a publication of the Protein Society.

[37]  H. Mchaourab,et al.  Mechanism of Chaperone Function in Small Heat-shock Proteins , 2003, The Journal of Biological Chemistry.

[38]  T. Ramakrishna,et al.  Role of the conserved SRLFDQFFG region of alpha-crystallin, a small heat shock protein. Effect on oligomeric size, subunit exchange, and chaperone-like activity. , 2003, Journal of Biological Chemistry.

[39]  J. Hirst,et al.  Theoretical studies of time-resolved spectroscopy of protein folding. , 2003, Faraday discussions.

[40]  Glyn L. Devlin,et al.  The Selective Inhibition of Serpin Aggregation by the Molecular Chaperone, α-Crystallin, Indicates a Nucleation-dependent Specificity* , 2003, Journal of Biological Chemistry.

[41]  Carol V Robinson,et al.  Phosphorylation of αB-Crystallin Alters Chaperone Function through Loss of Dimeric Substructure* , 2004, Journal of Biological Chemistry.

[42]  T. Ramakrishna,et al.  The IXI/V motif in the C-terminal extension of alpha-crystallins: alternative interactions and oligomeric assemblies. , 2004, Molecular vision.

[43]  V. Srinivas,et al.  Arginine hydrochloride enhances the dynamics of subunit assembly and the chaperone-like activity of alpha-crystallin. , 2005, Molecular vision.

[44]  C. Robinson,et al.  Subunit Exchange of Polydisperse Proteins , 2005, Journal of Biological Chemistry.

[45]  T. Ban,et al.  αB-crystallin, a small heat-shock protein, prevents the amyloid fibril growth of an amyloid β-peptide and β2-microglobulin , 2005 .

[46]  Md. Faiz Ahmad,et al.  Fibrillogenic and Non-fibrillogenic Ensembles of SDS-bound Human α-Synuclein , 2006 .

[47]  C. Robinson,et al.  Mimicking phosphorylation of alphaB-crystallin affects its chaperone activity. , 2007, The Biochemical journal.

[48]  Cait E. MacPhee,et al.  Mimicking phosphorylation of αB-crystallin affects its chaperone activity , 2007 .

[49]  N. Rangaraj,et al.  Association of alphaB-crystallin, a small heat shock protein, with actin: role in modulating actin filament dynamics in vivo. , 2007, Journal of molecular biology.