Comprehensive Genomic Profiling of 282 Pediatric Low‐ and High‐Grade Gliomas Reveals Genomic Drivers, Tumor Mutational Burden, and Hypermutation Signatures

This study highlights the value of comprehensive genomic profiling in the largest known cohort of pediatric glioma patients and explores the most common alterations across diagnosis and anatomic location. Tumor mutational burden and associated genetic factors that may predispose patients to developing a hypermutator phenotype are also discussed.

[1]  Uri Tabori,et al.  Targeted detection of genetic alterations reveal the prognostic impact of H3K27M and MAPK pathway aberrations in paediatric thalamic glioma , 2016, Acta Neuropathologica Communications.

[2]  M. Atkins,et al.  Predictive biomarkers for checkpoint inhibitor-based immunotherapy. , 2016, The Lancet. Oncology.

[3]  David T. W. Jones,et al.  Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma , 2012, Nature.

[4]  M. Weller,et al.  Clinical Neuropathology mini-review 6-2015: PD-L1: emerging biomarker in glioblastoma? , 2015, Clinical neuropathology.

[5]  David T. W. Jones,et al.  Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers , 2015, Acta Neuropathologica.

[6]  Christopher A. Miller,et al.  Immunogenomics of Hypermutated Glioblastoma: A Patient with Germline POLE Deficiency Treated with Checkpoint Blockade Immunotherapy. , 2016, Cancer discovery.

[7]  M. Stratton,et al.  The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website , 2004, British Journal of Cancer.

[8]  Mark D. Johnson,et al.  Clinical implementation of integrated whole-genome copy number and mutation profiling for glioblastoma. , 2015, Neuro-oncology.

[9]  J. Wolchok,et al.  Immune Checkpoint Blockade in Cancer Therapy. , 2015, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[10]  Yuki Togashi,et al.  Identification of novel isoforms of the EML4-ALK transforming gene in non-small cell lung cancer. , 2008, Cancer research.

[11]  The Cancer Genome Atlas Research Network Corrigendum: Comprehensive genomic characterization defines human glioblastoma genes and core pathways , 2013, Nature.

[12]  Yuki Togashi,et al.  EML4-ALK Fusion Is Linked to Histological Characteristics in a Subset of Lung Cancers , 2008, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[13]  H. Groen,et al.  PD-L1 expression in non-small cell lung cancer: Correlations with genetic alterations , 2016, Oncoimmunology.

[14]  Ching-Hon Pui,et al.  Challenging issues in pediatric oncology , 2011, Nature Reviews Clinical Oncology.

[15]  J. Minna,et al.  ALK inhibition for non-small cell lung cancer: from discovery to therapy in record time. , 2010, Cancer cell.

[16]  R. Kaur,et al.  Gliomas Promote Immunosuppression through Induction of B7-H1 Expression in Tumor-Associated Macrophages , 2013, Clinical Cancer Research.

[17]  Martin L. Miller,et al.  Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer , 2015, Science.

[18]  J. Tabernero,et al.  The expanding role of immunotherapy. , 2017, Cancer treatment reviews.

[19]  BRAF V600E Mutations Are Common in Pleomorphic Xanthoastrocytoma: Diagnostic and Therapeutic Implications , 2011, PloS one.

[20]  David T. W. Jones,et al.  Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. , 2012, Cancer cell.

[21]  Heather L. Mulder,et al.  Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas , 2013, Nature Genetics.

[22]  R. Beroukhim,et al.  Clinical multiplexed exome sequencing distinguishes adult oligodendroglial neoplasms from astrocytic and mixed lineage gliomas , 2014, Oncotarget.

[23]  A. Gajjar,et al.  Complete clinical regression of a BRAF V600E-mutant pediatric glioblastoma multiforme after BRAF inhibitor therapy , 2014, BMC Cancer.

[24]  Liliana Goumnerova,et al.  MYB-QKI rearrangements in Angiocentric Glioma drive tumorigenicity through a tripartite mechanism , 2016, Nature Genetics.

[25]  D. Merico,et al.  Immune Checkpoint Inhibition for Hypermutant Glioblastoma Multiforme Resulting From Germline Biallelic Mismatch Repair Deficiency. , 2016, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[26]  Benjamin E. Gross,et al.  Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal , 2013, Science Signaling.

[27]  David T. W. Jones,et al.  K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas , 2012, Acta Neuropathologica.

[28]  G. Reifenberger,et al.  BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. , 2008, The Journal of clinical investigation.

[29]  David T. W. Jones,et al.  Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. , 2008, Cancer research.

[30]  J. Taube,et al.  Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy , 2016, Nature Reviews Cancer.

[31]  Steven J. M. Jones,et al.  Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. , 2015, The New England journal of medicine.

[32]  J. Biegel,et al.  Activating mutations in BRAF characterize a spectrum of pediatric low-grade gliomas. , 2010, Neuro-oncology.

[33]  Benjamin E. Gross,et al.  The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. , 2012, Cancer discovery.