Improved Bounds on Fourier Entropy and Min-entropy
暂无分享,去创建一个
[1] Yishay Mansour,et al. An O(n^(log log n)) Learning Algorithm for DNT under the Uniform Distribution , 1995, J. Comput. Syst. Sci..
[2] Satyanarayana V. Lokam,et al. Upper bounds on Fourier entropy , 2015, Theor. Comput. Sci..
[3] Patrick Traxler,et al. Variable Influences in Conjunctive Normal Forms , 2009, SAT.
[4] Omer Reingold,et al. DNF sparsification and a faster deterministic counting algorithm , 2012, 2012 IEEE 27th Conference on Computational Complexity.
[5] Mahdi Cheraghchi,et al. AC0∘MOD2 lower bounds for the Boolean Inner Product , 2018, J. Comput. Syst. Sci..
[6] A. Montanaro. Some applications of hypercontractive inequalities in quantum information theory , 2012, 1208.0161.
[7] H. F. Bohnenblust,et al. On the Absolute Convergence of Dirichlet Series , 1931 .
[8] Emanuele Viola,et al. Hardness Amplification Proofs Require Majority , 2010, SIAM J. Comput..
[9] Andreas Defant,et al. Coordinatewise multiple summing operators in Banach spaces , 2010 .
[10] Alexander A. Sherstov. The Pattern Matrix Method , 2009, SIAM J. Comput..
[11] Daniel Pellegrino,et al. IMPROVING THE CONSTANTS FOR THE REAL AND COMPLEX BOHNENBLUST-HILLE INEQUALITY , 2010 .
[12] Kazuyuki Amano,et al. Tight Bounds on the Average Sensitivity of k-CNF , 2011, Theory Comput..
[13] C. E. SHANNON,et al. A mathematical theory of communication , 1948, MOCO.
[14] Alexander A. Sherstov. Algorithmic polynomials , 2018, Electron. Colloquium Comput. Complex..
[15] Ryan O'Donnell,et al. Analysis of Boolean Functions , 2014, ArXiv.
[16] J. Bourgain,et al. Influences of Variables and Threshold Intervals under Group Symmetries , 1997 .
[17] Shengyu Zhang. Efficient quantum protocols for XOR functions , 2014, SODA.
[18] Yaoyun Shi. Lower bounds of quantum black-box complexity and degree of approximating polynomials by influence of Boolean variables , 2000, Inf. Process. Lett..
[19] N. Alon,et al. The Probabilistic Method, Second Edition , 2000 .
[20] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[21] Alon Orlitsky,et al. A Spectral Lower Bound Techniqye for the Size of Decision Trees and Two Level AND/OR Circuits , 1990, IEEE Trans. Computers.
[22] Kristian Seip,et al. The Bohnenblust-Hille inequality for homogeneous polynomials is hypercontractive , 2009, 0904.3540.
[23] Noam Nisan,et al. Constant depth circuits, Fourier transform, and learnability , 1993, JACM.
[24] The Bohr radius of the $n$-dimensional polydisk is equivalent to $\sqrt{\frac{\log n}{n}} , 2013, 1310.2834.
[25] J. Littlewood. ON BOUNDED BILINEAR FORMS IN AN INFINITE NUMBER OF VARIABLES , 1930 .
[26] Troy Lee,et al. Lower Bounds in Communication Complexity , 2009, Found. Trends Theor. Comput. Sci..
[27] D. Pellegrino,et al. Sharp generalizations of the multilinear Bohnenblust--Hille inequality , 2013, 1306.3362.
[28] Elchanan Mossel,et al. A note on the Entropy/Influence conjecture , 2012, Discret. Math..
[29] Ronald de Wolf,et al. Quantum lower bounds by polynomials , 2001, JACM.
[30] L. Gross. LOGARITHMIC SOBOLEV INEQUALITIES. , 1975 .
[31] Troy Lee,et al. Multipartite entanglement in XOR games , 2013, Quantum Inf. Comput..
[32] Ronald de Wolf,et al. A Brief Introduction to Fourier Analysis on the Boolean Cube , 2008, Theory Comput..
[33] Daniel Pellegrino,et al. Towards sharp Bohnenblust--Hille constants , 2016, 1604.07595.