Strong Near-Field Coupling of Plasmonic Resonators Embedded in Si Nanowires

The strength of localized surface plasmon resonance (LSPR) near-field interactions scales in a well-known, nearly universal manner. Here, we show that embedding resonators in an anisotropic dielectric with a large permittivity can substantially increase coupling strength. We experimentally demonstrate this effect with Si nanowires containing two phosphorus-doped segments. The near-field decay length scaling factor is extracted from in situ infrared spectral response measurements using the “plasmon ruler” equation and found to be ca. 4−5 times larger than for the same resonators in isotropic vacuum or Si. Discrete dipole approximation calculations support the observed coupling behavior for nanowires and show how it is affected by the resonator geometry, carrier density, and embedding material (Si, Ge, GaAs, etc.). Our findings demonstrate that equivalent near-field interactions are achievable with a smaller total volume and/or at increased resonator spacing, offering new opportunities to engineer plasmon-b...

[1]  S. Linic,et al.  Erratum: Photochemical transformations on plasmonic metal nanoparticles. , 2015, Nature materials.

[2]  P. Jain,et al.  Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model. , 2006, The journal of physical chemistry. B.

[3]  Bernhard Lamprecht,et al.  Optical properties of two interacting gold nanoparticles , 2003 .

[4]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[5]  Mark T Swihart,et al.  Heavily-doped colloidal semiconductor and metal oxide nanocrystals: an emerging new class of plasmonic nanomaterials. , 2014, Chemical Society reviews.

[6]  M. Filler,et al.  Controlling silicon nanowire growth direction via surface chemistry. , 2012, Nano letters.

[7]  V. Shalaev,et al.  Alternative Plasmonic Materials: Beyond Gold and Silver , 2013, Advanced materials.

[8]  S. Maier,et al.  Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures , 2005 .

[9]  J. Hafner,et al.  Localized surface plasmon resonance sensors. , 2011, Chemical reviews.

[10]  P. Jain,et al.  Noble metal nanoparticle pairs: effect of medium for enhanced nanosensing. , 2008, Nano letters.

[11]  G. Schatz,et al.  Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions. , 2005, The journal of physical chemistry. B.

[12]  Carsten Sönnichsen,et al.  A molecular ruler based on plasmon coupling of single gold and silver nanoparticles , 2005, Nature Biotechnology.

[13]  Lars Samuelson,et al.  One-dimensional heterostructures in semiconductor nanowhiskers , 2002 .

[14]  B. Dagens,et al.  Observation of near-field dipolar interactions involved in a metal nanoparticle chain waveguide. , 2013, Nano letters.

[15]  Li-Wei Chou,et al.  Optically abrupt localized surface plasmon resonances in si nanowires by mitigation of carrier density gradients. , 2015, ACS nano.

[16]  P. Nordlander,et al.  Hot-electron-induced dissociation of H2 on gold nanoparticles supported on SiO2. , 2014, Journal of the American Chemical Society.

[17]  E. Bakkers,et al.  Growth kinetics of heterostructured GaP-GaAs nanowires. , 2006, Journal of the American Chemical Society.

[18]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[19]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[20]  Paul Mulvaney,et al.  Plasmon coupling of gold nanorods at short distances and in different geometries. , 2009, Nano letters.

[21]  Eugenio Calandrini,et al.  Midinfrared Plasmon-Enhanced Spectroscopy with Germanium Antennas on Silicon Substrates. , 2015, Nano letters.

[22]  Daniel Wasserman,et al.  Review of mid-infrared plasmonic materials , 2015 .

[23]  David R. Smith,et al.  Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles , 2003 .

[24]  M. El-Sayed,et al.  Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. , 2006, The journal of physical chemistry. B.

[25]  M. Filler,et al.  Engineering multimodal localized surface plasmon resonances in silicon nanowires. , 2013, Angewandte Chemie.

[26]  Harry A. Atwater,et al.  Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides , 2003, Nature materials.

[27]  M. Reuter,et al.  Synthesis of nanostructures in nanowires using sequential catalyst reactions , 2015, Nature materials.

[28]  M. Filler,et al.  Influence of Dielectric Anisotropy on the Absorption Properties of Localized Surface Plasmon Resonances Embedded in Si Nanowires , 2014 .

[29]  Emil Prodan,et al.  Plasmon Hybridization in Nanoparticle Dimers , 2004 .

[30]  Harald Giessen,et al.  Three-Dimensional Plasmon Rulers , 2011, Science.

[31]  S. Kodambaka,et al.  Formation of Compositionally Abrupt Axial Heterojunctions in Silicon-Germanium Nanowires , 2009, Science.

[32]  Andrea R Tao,et al.  Tunable and directional plasmonic coupling within semiconductor nanodisk assemblies. , 2014, Nano letters.

[33]  G. Patriarche,et al.  Analysis of vapor-liquid-solid mechanism in Au-assisted GaAs nanowire growth , 2005 .

[34]  N. Engheta,et al.  Coupling and guided propagation along parallel chains of plasmonic nanoparticles , 2010, 1008.5081.

[35]  Peter Nordlander,et al.  Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle. , 2009, Nano letters.

[36]  P. Nordlander,et al.  The effect of a dielectric core and embedding medium on the polarizability of metallic nanoshells , 2002 .

[37]  Paul Mulvaney,et al.  Effect of the Solution Refractive Index on the Color of Gold Colloids , 1994 .

[38]  Xing Zhang,et al.  Encoding abrupt and uniform dopant profiles in vapor-liquid-solid nanowires by suppressing the reservoir effect of the liquid catalyst. , 2014, ACS nano.

[39]  M. El-Sayed,et al.  On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape. , 2009, The journal of physical chemistry. A.

[40]  Michael A. Filler,et al.  Tunable mid-infrared localized surface plasmon resonances in silicon nanowires. , 2012, Journal of the American Chemical Society.

[41]  Prashant K. Jain,et al.  On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation , 2007 .

[42]  George C. Schatz,et al.  Nanosphere Lithography: Effect of the External Dielectric Medium on the Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles , 1999 .

[43]  Peidong Yang,et al.  Direct Observation of Vapor-Liquid-Solid Nanowire Growth , 2001 .

[44]  Peter Nordlander,et al.  Plasmon hybridization in nanorod dimers , 2008 .

[45]  Harry A. Atwater,et al.  Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy , 2002 .