On the robustness of single-loop sigma-Delta modulation

Sigma-delta modulation, a widely used method of analog-to-digital (A/D) signal conversion, is known to be robust to hardware imperfections, i.e., bit streams generated by slightly imprecise hardware components can be decoded comparably well. We formulate a model for robustness and give a rigorous analysis for single-loop sigma-delta modulation applied to constant signals (DC inputs) for N time cycles, with an arbitrary (small enough) initial condition u/sub o/, and a quantizer that may contain an offset error. The mean-square error (MSE) of any decoding scheme for this quantizer (with u/sub o/ and the offset error known) is bounded below by 1/96N/sup -3/. We also determine the asymptotically best possible MSE as N/spl rarr//spl infin/ for perfect decoding when u/sub o/=0 and u/sub o/= 1/2 . The robustness result is the upper bound that a triangular linear filter decoder (with both u/sub o/ and the offset error unknown) achieves an MSE of 40/3N/sup -3/. These results establish the known result that the O(1/N/sup 3/) decay of the MSE with N is optimal in the single-loop case, under weaker assumptions than previous analyses, and show that a suitable linear decoder is robust against offset error. These results are obtained using methods from number theory and Fourier analysis.

[1]  Axthonv G. Oettinger,et al.  IEEE Transactions on Information Theory , 1998 .

[2]  Avideh Zakhor,et al.  Reconstruction of oversampled band-limited signals from ΣΔ encoded binary sequences , 1994, IEEE Trans. Signal Process..

[3]  Ning He,et al.  Double-loop sigma-delta modulation with DC input , 1990, IEEE Trans. Commun..

[4]  Orla Feely,et al.  The Effect of Integrator Leak in , 1991 .

[5]  Toshio Hayashi,et al.  A multistage delta-sigma modulator without double integration loop , 1986, 1986 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[6]  L. O. Chua,et al.  The effect of integrator leak in Σ-Δ modulation , 1991 .

[7]  J. Candy,et al.  The Structure of Quantization Noise from Sigma-Delta Modulation , 1981 .

[8]  E. T. An Introduction to the Theory of Numbers , 1946, Nature.

[9]  J. Ian Richards,et al.  Review: Yitzhak Katznelson, An introduction to harmonic analysis , 1969 .

[10]  Rodnay Zaks,et al.  A/D and D/A conversion , 1978, Microprocess..

[11]  David F. Hoeschele,et al.  Analog-to-digital, digital-to-analog conversion techniques , 1968 .

[12]  Wu Chou,et al.  Multistage sigma-delta modulation , 1989, IEEE Trans. Inf. Theory.

[13]  S. Tewksbury,et al.  Oversampled, linear predictive and noise-shaping coders of order N g 1 , 1978 .

[14]  Hiroshi Inose,et al.  A unity bit coding method by negative feedback , 1963 .

[15]  Iain D. Craig,et al.  Analog-to-Digital and Digital-to-Analog Conversion Techniques (Second Edition) by David F. Hoeschele, John Wiley, New York, 1994, 397 pages including index (Hbk, £58) , 1995, Robotica.

[16]  Gabor C. Temes,et al.  Oversampling delta-sigma data converters : theory, design, and simulation , 1992 .

[17]  G. Temes Delta-sigma data converters , 1994 .

[18]  N. T. Thao,et al.  Deterministic analysis of sigma-delta modulation for linear and non-linear signal reconstruction , 1997, Int. J. Circuit Theory Appl..

[19]  Avideh Zakhor,et al.  Lower bounds on the MSE of the single and double loop sigma delta modulators , 1990, IEEE International Symposium on Circuits and Systems.

[20]  Leon O. Chua,et al.  The effect of integrator leak in Sigma - Delta modulation , 1991 .

[21]  C. Sinan Güntürk Number theoretical error estimates in a quantization scheme for bandlimited signals , 2000, Unusual Applications of Number Theory.

[22]  Avideh Zakhor,et al.  SIGMA Delta Modulators: Nonlinear Decoding Algorithms and Stability Analysis , 1993 .

[23]  Avideh Zakhor,et al.  Optimal decoding for data acquisition applications of sigma delta modulators , 1993, IEEE Trans. Signal Process..

[24]  Robert M. Gray,et al.  Oversampled Sigma-Delta Modulation , 1987, IEEE Trans. Commun..

[25]  D. R. Heath-Brown,et al.  The Theory of the Riemann Zeta-Function , 1987 .

[26]  James C. Candy,et al.  A Use of Double Integration in Sigma Delta Modulation , 1985, IEEE Trans. Commun..

[27]  Ning He,et al.  Multiloop sigma-delta quantization , 1992, IEEE Trans. Inf. Theory.

[28]  Robert M. Gray,et al.  Spectral analysis of quantization noise in a single-loop sigma-delta modulator with DC input , 1989, IEEE Trans. Commun..

[29]  Gabor C. Temes,et al.  A Multistage DeltaSigma Modulator without Double Integration Loop , 1992 .

[30]  Avideh Zakhor,et al.  Reconstruction of oversampled band-limited signals from Sigma Delta encoded binary sequences , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[31]  Martin Vetterli,et al.  Deterministic analysis of oversampled A/D conversion and decoding improvement based on consistent estimates , 1994, IEEE Trans. Signal Process..

[32]  R. Schreier,et al.  Delta-sigma data converters : theory, design, and simulation , 1997 .

[33]  Avideh Zakhor,et al.  New properties of sigma-delta modulators with DC inputs , 1992, IEEE Trans. Commun..

[34]  Nguyen T. Thao Vector quantization analysis of ΣΔ modulation , 1996, IEEE Trans. Signal Process..