Angle-based homing from a reference image set using the 1D trifocal tensor

This paper presents a visual homing method for a robot moving on the ground plane. The approach employs a set of omnidirectional images acquired previously at different locations (including the goal position) in the environment, and the current image taken by the robot. We present as contribution a method to obtain the relative angles between all these locations, using the computation of the 1D trifocal tensor between views and an indirect angle estimation procedure. The tensor is particularly well suited for planar motion and provides important robustness properties to our technique. Another contribution of our paper is a new control law that uses the available angles, with no range information involved, to drive the robot to the goal. Therefore, our method takes advantage of the strengths of omnidirectional vision, which provides a wide field of view and very precise angular information. We present a formal proof of the stability of the proposed control law. The performance of our approach is illustrated through simulations and different sets of experiments with real images.

[1]  Josechu J. Guerrero,et al.  Visual control through the trifocal tensor for nonholonomic robots , 2010, Robotics Auton. Syst..

[2]  Martin Jägersand,et al.  Three-view uncalibrated visual servoing , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[3]  François Chaumette,et al.  Visual servo control. I. Basic approaches , 2006, IEEE Robotics & Automation Magazine.

[4]  Luc Van Gool,et al.  Omnidirectional Vision Based Topological Navigation , 2007, International Journal of Computer Vision.

[5]  Gonzalo López-Nicolás,et al.  Omnidirectional visual homing using the 1D trifocal tensor , 2010, 2010 IEEE International Conference on Robotics and Automation.

[6]  Avinash C. Kak,et al.  Vision for Mobile Robot Navigation: A Survey , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Bernhard Schölkopf,et al.  Learning View Graphs for Robot Navigation , 1997, AGENTS '97.

[8]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[9]  Andrea Cherubini,et al.  Visual navigation with obstacle avoidance , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[10]  Josechu J. Guerrero,et al.  Multiple homographies with omnidirectional vision for robot homing , 2010, Robotics Auton. Syst..

[11]  Ben J. A. Kröse,et al.  Sparse appearance based modeling for robot localization , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[12]  Edward M. Riseman,et al.  Image-based homing , 1992 .

[13]  Ana Cristina Murillo,et al.  Localization and Matching Using the Planar Trifocal Tensor With Bearing-Only Data , 2008, IEEE Transactions on Robotics.

[14]  Danica Kragic,et al.  Switching visual control based on epipoles for mobile robots , 2008, Robotics Auton. Syst..

[15]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[16]  Ben J. A. Kröse,et al.  Hierarchical map building and planning based on graph partitioning , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[17]  Warren E. Dixon,et al.  Homography-based visual servo tracking control of a wheeled mobile robot , 2006, IEEE Transactions on Robotics.

[18]  Magnus Oskarsson,et al.  Solutions and Ambiguities of the Structure and Motion Problem for 1D Retinal Vision , 2000, Journal of Mathematical Imaging and Vision.

[19]  Andrew Vardy,et al.  Homing in scale space , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[20]  Andrew Vardy,et al.  Visual homing in environments with anisotropic landmark distribution , 2007, Auton. Robots.

[21]  Graziano Chesi,et al.  Visual Servoing via Advanced Numerical Methods , 2010 .

[22]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[23]  Ben J. A. Kröse,et al.  From images to rooms , 2007, Robotics Auton. Syst..

[24]  R. Pfeifer,et al.  A mobile robot employing insect strategies for navigation , 2000, Robotics Auton. Syst..

[25]  Nick Barnes,et al.  Robust visual homing with landmark angles , 2009, Robotics: Science and Systems.

[26]  Michael Werman,et al.  Trilinearity of three perspective views and its associated tensor , 1995, Proceedings of IEEE International Conference on Computer Vision.

[27]  Gonzalo López-Nicolás,et al.  Vision-based exponential stabilization of mobile robots , 2011, Auton. Robots.

[28]  Antonis A. Argyros,et al.  Robot Homing by Exploiting Panoramic Vision , 2005, Auton. Robots.

[29]  Hanspeter A. Mallot,et al.  Efficient visual homing based on Fourier transformed panoramic images , 2006, Robotics Auton. Syst..

[30]  Svetha Venkatesh,et al.  Insect-Inspired Robotic Homing , 1999, Adapt. Behav..

[31]  Seth Hutchinson,et al.  Visual Servo Control Part I: Basic Approaches , 2006 .

[32]  Ehud Rivlin,et al.  Visual homing: Surfing on the epipoles , 1997, Block Island Workshop on Vision and Control.

[33]  Graziano Chesi,et al.  A simple technique for improving camera displacement estimation in eye-in-hand visual servoing , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Frank Dellaert,et al.  Linear 2D localization and mapping for single and multiple robot scenarios , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[35]  Ben J. A. Kröse,et al.  Navigation using an appearance based topological map , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[36]  Gonzalo López-Nicolás,et al.  Omnidirectional visual control of mobile robots based on the 1D trifocal tensor , 2010, Robotics Auton. Syst..

[37]  Philippe Martinet,et al.  Indoor navigation of a non-holonomic mobile robot using a visual memory , 2008, Auton. Robots.