New quantum codes from dual-containing cyclic codes over finite rings

Let $$R=\mathbb {F}_{2^{m}}+u\mathbb {F}_{2^{m}}+\cdots +u^{k}\mathbb {F}_{2^{m}}$$R=F2m+uF2m+⋯+ukF2m, where $$\mathbb {F}_{2^{m}}$$F2m is the finite field with $$2^{m}$$2m elements, m is a positive integer, and u is an indeterminate with $$u^{k+1}=0.$$uk+1=0. In this paper, we propose the constructions of two new families of quantum codes obtained from dual-containing cyclic codes of odd length over R. A new Gray map over R is defined, and a sufficient and necessary condition for the existence of dual-containing cyclic codes over R is given. A new family of $$2^{m}$$2m-ary quantum codes is obtained via the Gray map and the Calderbank–Shor–Steane construction from dual-containing cyclic codes over R. In particular, a new family of binary quantum codes is obtained via the Gray map, the trace map and the Calderbank–Shor–Steane construction from dual-containing cyclic codes over R.

[1]  Reginaldo Palazzo Júnior,et al.  Constructions of new families of nonbinary CSS codes , 2010, Discret. Math..

[2]  Pradeep Kiran Sarvepalli,et al.  On Quantum and Classical BCH Codes , 2006, IEEE Transactions on Information Theory.

[3]  Sergio R. López-Permouth,et al.  Cyclic and negacyclic codes over finite chain rings , 2004, IEEE Transactions on Information Theory.

[4]  Xinmei Wang,et al.  QUANTUM ERROR-CORRECTING CODES FROM QUASI-CYCLIC CODES , 2008 .

[5]  N. Sloane,et al.  Quantum Error Correction Via Codes Over GF , 1998 .

[6]  Guanghui Zhang,et al.  Application of Constacyclic Codes to Quantum MDS Codes , 2014, IEEE Transactions on Information Theory.

[7]  T. Aaron Gulliver,et al.  Quantum codes over rings , 2014 .

[9]  Shixin Zhu,et al.  New Quantum MDS Codes From Negacyclic Codes , 2013, IEEE Transactions on Information Theory.

[10]  Shixin Zhu,et al.  Constacyclic Codes and Some New Quantum MDS Codes , 2014, IEEE Transactions on Information Theory.

[11]  Santosh Kumar,et al.  Nonbinary Stabilizer Codes Over Finite Fields , 2005, IEEE Transactions on Information Theory.

[12]  Shixin Zhu,et al.  Quantum negacyclic codes , 2013 .

[13]  Alexei E. Ashikhmin,et al.  Nonbinary quantum stabilizer codes , 2001, IEEE Trans. Inf. Theory.

[14]  Xueliang Li,et al.  QUANTUM CODES CONSTRUCTED FROM BINARY CYCLIC CODES , 2004 .

[15]  Xueliang Li,et al.  Construction of quantum caps in projective space PG(r, 4) and quantum codes of distance 4 , 2016, Quantum Inf. Process..

[16]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[17]  Andrew Thangaraj,et al.  Quantum codes from cyclic codes over GF(4m) , 2001, IEEE Trans. Inf. Theory.

[18]  Shixin Zhu,et al.  QUATERNARY CONSTRUCTION OF QUANTUM CODES FROM CYCLIC CODES OVER $\mathbb{F}_4 + u\mathbb{F}_4$ , 2011 .

[19]  Mohammad Ashraf,et al.  Quantum codes from cyclic codes over F3 + vF3 , 2014 .

[20]  Mehmet Özen,et al.  QUANTUM CODES FROM CYCLIC CODES OVER F 4 + vF 4 , 2016 .

[21]  Chaoping Xing,et al.  Asymptotic bounds on quantum codes from algebraic geometry codes , 2006, IEEE Transactions on Information Theory.

[22]  I. Fuss,et al.  Quantum Reed-Muller codes , 1997, quant-ph/9703045.

[23]  Wenping Ma,et al.  QUANTUM CODES FROM CYCLIC CODES OVER FINITE RING , 2009 .

[24]  Shixin Zhu,et al.  On non-binary quantum repeated-root cyclic codes , 2014 .

[25]  G. L. Guardia Constructions of new families of nonbinary quantum codes , 2009 .

[26]  Sebastian Raaphorst Reed-Muller Codes , 2003 .

[27]  Hao Chen,et al.  Quantum codes from concatenated algebraic-geometric codes , 2005, IEEE Transactions on Information Theory.

[28]  Daniele Bartoli,et al.  New Quantum Caps in PG(4, 4) , 2009, 0905.1059.

[29]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.