Direct Optical Fringe Writing of Diffraction Specific Coherent Panoramagrams in Photorefractive Polymer for Updatable Three-Dimensional Holographic Display

Progress in the development of an updatable holographic display system based around the direct transfer of computer-generated holographic fringe patterns from LCoS SLMs into photorefractive polymeric materials is presented. This architecture is poised as a simplifying alternative to previous demonstrations of updatable holographic displays in photorefractive polymeric materials based around conventional interference-based holographic stereogram techniques. Our system concept – comprised of fringe pattern generation on computer, fringe pattern transfer from SLM to photorefractive polymer, and spatial multiplexing for large-image generation – reintroduces accommodation cues to the resulting holographic images and represents a reduction of system footprint, complexity, and cost relative to the current interference-based systems. We present the adaptation of our Diffraction Specific Coherent Panoramagram fringe computation method – originally developed to drive AOM-based holographic displays at video rates while preserving all depth cues, including accommodation – to the current display architecture and depict methods for direct fringe transfer from SLM to photorefractive polymer. Preliminary results of horizontal parallax-only images on this display are presented and directions for performance improvements and system extensions are explored.

[1]  J. Goodman Some fundamental properties of speckle , 1976 .

[2]  V. Michael Bove,et al.  Reconfigurable image projection holograms , 2006 .

[3]  Hiroshi Kawai,et al.  405 nm Laser Thermal Lithography of 40 nm Pattern Using Super Resolution Organic Resist Material , 2009 .

[4]  O. Bryngdahl,et al.  Computer-generated rainbow holograms. , 1984, Applied optics.

[5]  Yuji Sakamoto,et al.  Computer-generated holograms on a CD-R disk , 2004, IS&T/SPIE Electronic Imaging.

[6]  W N Charman,et al.  Astigmatism, accommodation, and visual instrumentation. , 1978, Applied optics.

[7]  Bernard D. Adelstein,et al.  Head Tracking Latency in Virtual Environments: Psychophysics and a Model , 2003 .

[8]  V. Michael Bove,et al.  Interactive holographic stereograms with accommodation cues , 2010, OPTO.

[9]  Karsten Buse,et al.  Inorganic Photorefractive Materials , 2000 .

[10]  Erwin R. Meinders,et al.  Phase-Transition Mastering of High-Density Optical Media , 2007 .

[11]  Katerina Mania,et al.  Perceptual sensitivity to head tracking latency in virtual environments with varying degrees of scene complexity , 2004, APGV '04.

[12]  David M. Hoffman,et al.  Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. , 2008, Journal of vision.

[13]  R. Voorakaranam,et al.  An Updatable Holographic Display for 3D Visualization , 2008, Journal of Display Technology.

[14]  J R Tresilian,et al.  Ordinal depth information from accommodation? , 2000, Ergonomics.

[15]  M Clark Two-dimensional, three-dimensional, and gray-scale images reconstructed from computer-generated holograms designed by use of a direct-search method. , 1999, Applied optics.

[16]  S. Benton,et al.  Holographic Imaging , 2008 .

[17]  Bernard Kippelen,et al.  Overview of Photorefractive Polymers for Holographic Data Storage , 2000 .

[18]  Sundeep Jolly,et al.  Diffraction specific coherent panoramagrams of real scenes , 2011, OPTO.

[19]  Yasuhiro Takaki,et al.  Accommodation measurements of horizontally scanning holographic display. , 2012, Optics express.

[20]  Nasser N Peyghambarian,et al.  Are stereograms holograms? A human perception analysis of sampled perspective holography , 2013 .

[21]  Timothy D. Wilkinson,et al.  Production of computer-generated holograms on recordable compact disk media using a compact disk writer , 2003 .

[22]  V. Michael Bove,et al.  P‐3: Evaluation of Rendering Algorithms for Presenting Layered Information on Holographic Displays , 2010 .

[23]  Christophe Martinez,et al.  Complementary computer generated holography for aesthetic watermarking. , 2012, Optics express.

[24]  V. Michael Bove,et al.  Display Holography's Digital Second Act , 2012, Proceedings of the IEEE.

[25]  Hiroshi Yoshikawa,et al.  Development of a compact direct fringe printer for computer-generated holograms , 2004, IS&T/SPIE Electronic Imaging.

[26]  Donald H. Barnhart,et al.  Phase-conjugate holographic system for high-resolution particle-image velocimetry. , 1994, Applied optics.

[27]  P. Blanche,et al.  An updatable holographic three-dimensional display , 2008, Nature.

[28]  Takeshi Yamaguchi,et al.  Computer-generated holograms for 3D display , 2009 .

[29]  A W Lohmann,et al.  Binary fraunhofer holograms, generated by computer. , 1967, Applied optics.

[30]  R Sekuler,et al.  Blur and Contrast as Pictorial Depth Cues , 1997, Perception.

[31]  M A Neifeld,et al.  Optical memory disks in optical information processing. , 1990, Applied optics.

[32]  Erwin R. Meinders,et al.  Liquid Immersion Deep-UV Optical Disc Mastering for Blu-ray Disc Read-Only Memory , 2004 .

[33]  S. Palmer Vision Science : Photons to Phenomenology , 1999 .

[34]  L. B. Lesem,et al.  The kinoform: a new wavefront reconstruction device , 1969 .

[35]  P. Blanche,et al.  Holographic three-dimensional telepresence using large-area photorefractive polymer , 2010, Nature.

[36]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[37]  G Tricoles,et al.  Computer generated holograms: an historical review. , 1987, Applied optics.

[38]  William Ribarsky,et al.  Maintaining usability during 3D placement despite delay , 2003, IEEE Virtual Reality, 2003. Proceedings..