On-line parameter identification of non-stationary continuous system with time-variant delay

A method of online parameter estimation of nonstationary continuous systems having unknown time-variant input delay is proposed and demonstrated by some computer simulations. The recursive running DFT (discrete Fourier transform) is employed to calculate a number of transfer gains at arbitrary specified frequencies. Input delay, as one of the unknown parameters to be estimated, is uncoupled with other parameters by combining the absolute values of system gains and their real/imaginary parts. A simple way for directly estimating system parameters including input delay is demonstrated by some examples of simple systems. A method of solution for a general system is then proposed and verified by an example.<<ETX>>

[1]  G. Hostetter,et al.  Recursive discrete Fourier transformation , 1980 .

[2]  Pertti M. Mäkilä,et al.  Approximation and identification of continuous-time systems , 1990 .

[3]  Helmuth Stahl Transfer function synthesis using frequency response data , 1984 .

[4]  J. Lam Convergence of a class of Pad approximations for delay systems , 1990 .

[5]  P. Sannuti,et al.  Analysis and synthesis of dynamic systems via block-pulse functions , 1977 .

[6]  G. Rao,et al.  Identification of deterministic time-lag systems , 1976 .

[7]  G. Rao,et al.  Identification of time-lag systems via Walsh functions , 1979 .

[8]  Edward C. Wong Parameter identification of linear discrete stochastic systems with time delays , 1980 .

[9]  Han-Fu Chen,et al.  Identification and adaptive control for systems with unknown orders, delay, and coefficients , 1990 .

[10]  Koichi Koganezawa The Recursive Walsh Transform , 1989 .

[11]  Lennart Ljung,et al.  Adaptation and tracking in system identification - A survey , 1990, Autom..

[12]  Dong H. Chyung,et al.  Parameter identification of linear delay systems , 1989 .

[13]  A. H. Whitfield Transfer function synthesis using frequency response data , 1986 .

[14]  B. Noble Applied Linear Algebra , 1969 .

[15]  A. Papoulis Signal Analysis , 1977 .

[16]  G. J. Rogers,et al.  Sequential transfer-function synthesis from measured data , 1979 .

[17]  H. Unbehauen,et al.  Identification of continuous systems , 1987 .

[18]  C. F. Chen,et al.  Time-domain synthesis via Walsh functions , 1975 .