Extensión del Lenguaje SQL con Nuevas Primitivas para el Descubrimiento de Reglas de Asociación en una Arquitectura Fuertemente Acoplada con un SGBD

Current database systems have been designed mainly to support business applications. The success of Structured Query Language SQL has capitalized on a small number of primitives sufficient to support a vast majority of such applications. However, these primitives are not enough to support the emergent family of the new applications dealing with Knowledge Discovery in Databases. In this paper, both the relational algebra and the SQL language are extended with new algebraic operators and primitives, to support efficiently association data mining tasks.

[1]  Surajit Chaudhuri,et al.  Integration of Data Mining and Relational Databases , 2000 .

[2]  Sunita Sarawagi,et al.  Integrating Association Rule Mining with Relational Database Systems: Alternatives and Implications , 1998, SIGMOD '98.

[3]  Masaru Kitsuregawa,et al.  Parallel SQL Based Association Rule Mining on Large Scale PC Cluster: Performance Comparison with Directly Coded C Implementation , 1999, PAKDD.

[4]  E. F. Codd,et al.  Extending the database relational model to capture more meaning , 1979, ACM Trans. Database Syst..

[5]  E. F. Codd,et al.  A relational model of data for large shared data banks , 1970, CACM.

[6]  Giuseppe Psaila,et al.  An Extension to SQL for Mining Association Rules , 1998, Data Mining and Knowledge Discovery.

[7]  Sharma Chakravarthy,et al.  Performance Evaluation and Optimization of Join Queries for Association Rule Mining , 1999, DaWaK.

[8]  A. Castaño,et al.  Fundamentos y modelos de bases de datos , 1997 .

[9]  Ricardo Timarán Pereira,et al.  New Algebraic Operators and SQL Primitives for Mining Association Rules , 2003, Neural Networks and Computational Intelligence.

[10]  F. E. A Relational Model of Data Large Shared Data Banks , 2000 .

[11]  Michael L. Heytens,et al.  NonStop SQL/MX primitives for knowledge discovery , 1999, KDD '99.

[12]  Ramakrishnan Srikant,et al.  Fast algorithms for mining association rules , 1998, VLDB 1998.

[13]  Surajit Chaudhuri,et al.  Integrating data mining with SQL databases: OLE DB for data mining , 2001, Proceedings 17th International Conference on Data Engineering.

[14]  Ricardo Timarán Pereira,et al.  EquipAsso: An Algorithm based on New Relational Algebraic Operators for Association Rules Discovery , 2005, Computational Intelligence.

[15]  Philip S. Yu,et al.  Data Mining: An Overview from a Database Perspective , 1996, IEEE Trans. Knowl. Data Eng..

[16]  Rakesh Agarwal,et al.  Fast Algorithms for Mining Association Rules , 1994, VLDB 1994.

[17]  Sunita Sarawagi,et al.  Mining Generalized Association Rules and Sequential Patterns Using SQL Queries , 1998, KDD.

[18]  E. F. Codd,et al.  Relational Completeness of Data Base Sublanguages , 1972, Research Report / RJ / IBM / San Jose, California.

[19]  Jiawei Han,et al.  Data Mining: Concepts and Techniques , 2000 .

[20]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[21]  Jeffrey Scott Vitter,et al.  Scalable mining for classification rules in relational databases , 1998 .

[22]  Arun N. Swami,et al.  Set-oriented mining for association rules in relational databases , 1995, Proceedings of the Eleventh International Conference on Data Engineering.

[23]  Jean-François Boulicaut,et al.  Data Mining Query Languages , 2005, Data Mining and Knowledge Discovery Handbook.

[24]  Alan L. Cox,et al.  Efficient mining for association rules with relational database systems , 1999, Proceedings. IDEAS'99. International Database Engineering and Applications Symposium (Cat. No.PR00265).

[25]  Ricardo Timarán Pereira Arquitecturas de integración del proceso de descubrimiento de conocimiento con sistemas de gestión de bases de datos: un estado del arte , 2011 .

[26]  Heikki Mannila,et al.  A database perspective on knowledge discovery , 1996, CACM.

[27]  Giuseppe Psaila,et al.  A New SQL-like Operator for Mining Association Rules , 1996, VLDB.

[28]  Petra Perner,et al.  Data Mining - Concepts and Techniques , 2002, Künstliche Intell..