Variational eigenvalues of the fractional g-Laplacian

In the present work we study existence of sequences of variational eigenvalues to non-local non-standard growth problems ruled by the fractional g-Laplacian operator with different boundary conditions (Dirichlet, Neumann and Robin). Due to the non-homogeneous nature of the operator several drawbacks must be overcome, leading to some results that contrast with the case of power functions.

[1]  L. Slavíková,et al.  On the Limit as $$s\rightarrow 0^+$$ of Fractional Orlicz–Sobolev Spaces , 2020 .

[2]  A. Salort Hardy inequalities in fractional Orlicz-Sobolev spaces , 2020, Publicacions Matemàtiques.

[3]  Julián Fernández Bonder,et al.  Interior and up to the boundary regularity for the fractional g-Laplacian: The convex case , 2020, Nonlinear Analysis.

[4]  S. Bahrouni Infinitely many solutions for problems in fractional Orlicz–Sobolev spaces , 2020, Rocky Mountain Journal of Mathematics.

[5]  A. Salort,et al.  Fractional eigenvalues in Orlicz spaces with no Δ2 condition , 2020, 2005.01847.

[6]  Ariel Salort,et al.  Neumann and Robin type boundary conditions in Fractional Orlicz-Sobolev spaces , 2020, ESAIM: Control, Optimisation and Calculus of Variations.

[7]  A. Salort,et al.  A Pólya–Szegö principle for general fractional Orlicz–Sobolev spaces , 2020 .

[8]  A. Cianchi,et al.  On the limit as $s\to 0^+$ of fractional Orlicz-Sobolev spaces , 2020, 2002.05449.

[9]  A. Cianchi,et al.  Fractional Orlicz-Sobolev embeddings , 2020, 2001.05565.

[10]  S. Bahrouni,et al.  Embedding theorems in the fractional Orlicz-Sobolev space and applications to non-local problems , 2019, Discrete & Continuous Dynamical Systems - A.

[11]  E. Azroul,et al.  Existence of solutions for a nonlocal type problem in fractional Orlicz Sobolev spaces , 2019, Advances in Operator Theory.

[12]  L. S. Tavares,et al.  Basic results of fractional Orlicz-Sobolev space and applications to non-local problems , 2019, Topological Methods in Nonlinear Analysis.

[13]  A. Salort Eigenvalues and minimizers for a non-standard growth non-local operator , 2018, Journal of Differential Equations.

[14]  Julián Fernández Bonder,et al.  A Hölder infinity Laplacian obtained as limit of Orlicz fractional Laplacians , 2018, Revista Matemática Complutense.

[15]  A. Salort,et al.  Fractional order Orlicz-Sobolev spaces , 2017, Journal of Functional Analysis.

[16]  Marco Squassina,et al.  Stability of variational eigenvalues for the fractional p−Laplacian , 2015, 1503.04182.

[17]  E. Parini,et al.  The second eigenvalue of the fractional p-Laplacian , 2014, 1409.6284.

[18]  L. Pezzo,et al.  The first non-zero Neumann p-fractional eigenvalue , 2014, 1409.0840.

[19]  Julián Fernández Bonder,et al.  Quasilinear eigenvalues , 2014, 1402.6640.

[20]  Nikolaos S. Papageorgiou,et al.  Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems , 2013 .

[21]  Giovanni Franzina,et al.  Fractional p-eigenvalues , 2013, 1307.1789.

[22]  Marcelo Montenegro,et al.  The eigenvalue problem for quasilinear elliptic operators with general growth , 2012, Appl. Math. Lett..

[23]  Erik Lindgren,et al.  Fractional eigenvalues , 2012, 1203.4130.

[24]  An Lê,et al.  Eigenvalue problems for the p-Laplacian , 2006 .

[25]  K. Schmitt,et al.  Variational Eigenvalues of Degenerate Eigenvalue Problems for the Weighted p-Laplacian , 2005 .

[26]  J. Gossez,et al.  On a nonlinear eigenvalue problem in OrliczSobolev spaces , 2002, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[27]  Malempati M. Rao,et al.  Applications Of Orlicz Spaces , 2002 .

[28]  M. Tienari Ljusternik–Schnirelmann Theorem for the Generalized Laplacian , 2000 .

[29]  Pavel Drábek,et al.  Resonance Problems for the p-Laplacian☆ , 1999 .

[30]  K. Schmitt,et al.  On principal eigenvalues for quasilinear elliptic differential operators: an Orlicz-Sobolev space setting , 1999 .

[31]  P. Lindqvist On the Equation div( | ∇u | p-2 ∇u) + λ | u | p-2 u = 0 , 1990 .

[32]  E. Zeidler Nonlinear Functional Analysis and Its Applications: II/ A: Linear Monotone Operators , 1989 .

[33]  A. Szulkin Ljusternik-Schnirelmann theory on $C^1$-manifolds , 1988 .

[34]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .

[35]  E. Zeidler Nonlinear Functional Analysis and its Applications: III: Variational Methods and Optimization , 1984 .

[36]  K. Georg,et al.  On spectral theory for nonlinear operators , 1977 .

[37]  M. A. Krasnoselʹskii Topological methods in the theory of nonlinear integral equations , 1968 .

[38]  R. I. Kachurovskii,et al.  ON THE VARIATIONAL THEORY OF NONLINEAR OPERATORS AND EQUATIONS. , 1966 .

[39]  F. Browder Infinite Dimensional Manifolds and Non-Linear Elliptic Eigenvalue Problems , 1965 .

[40]  F. Browder Lusternik-Schnirelman category and nonlinear elliptic eigenvalue problems , 1965 .

[41]  F. Browder Nonlinear elliptic problems. II , 1964 .

[42]  F. Browder Nonlinear elliptic boundary value problems , 1963 .

[43]  G. Minty Monotone (nonlinear) operators in Hilbert space , 1962 .

[44]  J. Lamperti On the isometries of certain function-spaces , 1958 .

[45]  F. Browder On the Eigenfunctions and Eigenvalues of the General Linear Elliptic Differential Operator. , 1953, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Mingqi Xiang,et al.  On a class of nonvariational problems in fractional Orlicz–Sobolev spaces , 2020 .

[47]  Masayuki Itô,et al.  Positive Solutions of Quasilinear Elliptic Equations with Critical Orlicz-Sobolev Nonlinearity on RN , 2006 .

[48]  M. Cuesta Minimax theorems on C1 manifolds via Ekeland variational principle , 2003 .

[49]  V. Mustonen,et al.  An eigenvalue problem for generalized Laplacian in Orlicz—Sobolev spaces , 1999, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[50]  J. García Azorero,et al.  Existence and nonuniqueness for the p-Laplacian nonlinear Eigenvalues , 1987 .

[51]  J.-L. Lions,et al.  Simplicit'e et isolation de la premi`ere valeur propre du p-Laplacien avec poids , 1987 .

[52]  J. G. Azorero,et al.  Existence and nonuniqueness for the p-laplacian , 1987 .

[53]  J. Necas,et al.  Spectral theory of nonlinear operators , 1973 .

[54]  J. Necas,et al.  LJUSTERNIK‐SCHNIRELMANN Theorem and Nonlinear Eigenvalue Problems , 1972 .

[55]  Felix E. Browder,et al.  Existence theorems for nonlinear partial di erential equations , 1970 .

[56]  F. Browder Variational methods for nonlinear elliptic eigenvalue problems , 1965 .

[57]  Israel Halperin Function Spaces , 1953, Canadian Journal of Mathematics.

[58]  An L,et al.  Eigenvalue Problems for the P-laplacian , 2022 .