Variational eigenvalues of the fractional g-Laplacian
暂无分享,去创建一个
[1] L. Slavíková,et al. On the Limit as $$s\rightarrow 0^+$$ of Fractional Orlicz–Sobolev Spaces , 2020 .
[2] A. Salort. Hardy inequalities in fractional Orlicz-Sobolev spaces , 2020, Publicacions Matemàtiques.
[3] Julián Fernández Bonder,et al. Interior and up to the boundary regularity for the fractional g-Laplacian: The convex case , 2020, Nonlinear Analysis.
[4] S. Bahrouni. Infinitely many solutions for problems in fractional Orlicz–Sobolev spaces , 2020, Rocky Mountain Journal of Mathematics.
[5] A. Salort,et al. Fractional eigenvalues in Orlicz spaces with no Δ2 condition , 2020, 2005.01847.
[6] Ariel Salort,et al. Neumann and Robin type boundary conditions in Fractional Orlicz-Sobolev spaces , 2020, ESAIM: Control, Optimisation and Calculus of Variations.
[7] A. Salort,et al. A Pólya–Szegö principle for general fractional Orlicz–Sobolev spaces , 2020 .
[8] A. Cianchi,et al. On the limit as $s\to 0^+$ of fractional Orlicz-Sobolev spaces , 2020, 2002.05449.
[9] A. Cianchi,et al. Fractional Orlicz-Sobolev embeddings , 2020, 2001.05565.
[10] S. Bahrouni,et al. Embedding theorems in the fractional Orlicz-Sobolev space and applications to non-local problems , 2019, Discrete & Continuous Dynamical Systems - A.
[11] E. Azroul,et al. Existence of solutions for a nonlocal type problem in fractional Orlicz Sobolev spaces , 2019, Advances in Operator Theory.
[12] L. S. Tavares,et al. Basic results of fractional Orlicz-Sobolev space and applications to non-local problems , 2019, Topological Methods in Nonlinear Analysis.
[13] A. Salort. Eigenvalues and minimizers for a non-standard growth non-local operator , 2018, Journal of Differential Equations.
[14] Julián Fernández Bonder,et al. A Hölder infinity Laplacian obtained as limit of Orlicz fractional Laplacians , 2018, Revista Matemática Complutense.
[15] A. Salort,et al. Fractional order Orlicz-Sobolev spaces , 2017, Journal of Functional Analysis.
[16] Marco Squassina,et al. Stability of variational eigenvalues for the fractional p−Laplacian , 2015, 1503.04182.
[17] E. Parini,et al. The second eigenvalue of the fractional p-Laplacian , 2014, 1409.6284.
[18] L. Pezzo,et al. The first non-zero Neumann p-fractional eigenvalue , 2014, 1409.0840.
[19] Julián Fernández Bonder,et al. Quasilinear eigenvalues , 2014, 1402.6640.
[20] Nikolaos S. Papageorgiou,et al. Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems , 2013 .
[21] Giovanni Franzina,et al. Fractional p-eigenvalues , 2013, 1307.1789.
[22] Marcelo Montenegro,et al. The eigenvalue problem for quasilinear elliptic operators with general growth , 2012, Appl. Math. Lett..
[23] Erik Lindgren,et al. Fractional eigenvalues , 2012, 1203.4130.
[24] An Lê,et al. Eigenvalue problems for the p-Laplacian , 2006 .
[25] K. Schmitt,et al. Variational Eigenvalues of Degenerate Eigenvalue Problems for the Weighted p-Laplacian , 2005 .
[26] J. Gossez,et al. On a nonlinear eigenvalue problem in OrliczSobolev spaces , 2002, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[27] Malempati M. Rao,et al. Applications Of Orlicz Spaces , 2002 .
[28] M. Tienari. Ljusternik–Schnirelmann Theorem for the Generalized Laplacian , 2000 .
[29] Pavel Drábek,et al. Resonance Problems for the p-Laplacian☆ , 1999 .
[30] K. Schmitt,et al. On principal eigenvalues for quasilinear elliptic differential operators: an Orlicz-Sobolev space setting , 1999 .
[31] P. Lindqvist. On the Equation div( | ∇u | p-2 ∇u) + λ | u | p-2 u = 0 , 1990 .
[32] E. Zeidler. Nonlinear Functional Analysis and Its Applications: II/ A: Linear Monotone Operators , 1989 .
[33] A. Szulkin. Ljusternik-Schnirelmann theory on $C^1$-manifolds , 1988 .
[34] E. Zeidler. Nonlinear functional analysis and its applications , 1988 .
[35] E. Zeidler. Nonlinear Functional Analysis and its Applications: III: Variational Methods and Optimization , 1984 .
[36] K. Georg,et al. On spectral theory for nonlinear operators , 1977 .
[37] M. A. Krasnoselʹskii. Topological methods in the theory of nonlinear integral equations , 1968 .
[38] R. I. Kachurovskii,et al. ON THE VARIATIONAL THEORY OF NONLINEAR OPERATORS AND EQUATIONS. , 1966 .
[39] F. Browder. Infinite Dimensional Manifolds and Non-Linear Elliptic Eigenvalue Problems , 1965 .
[40] F. Browder. Lusternik-Schnirelman category and nonlinear elliptic eigenvalue problems , 1965 .
[41] F. Browder. Nonlinear elliptic problems. II , 1964 .
[42] F. Browder. Nonlinear elliptic boundary value problems , 1963 .
[43] G. Minty. Monotone (nonlinear) operators in Hilbert space , 1962 .
[44] J. Lamperti. On the isometries of certain function-spaces , 1958 .
[45] F. Browder. On the Eigenfunctions and Eigenvalues of the General Linear Elliptic Differential Operator. , 1953, Proceedings of the National Academy of Sciences of the United States of America.
[46] Mingqi Xiang,et al. On a class of nonvariational problems in fractional Orlicz–Sobolev spaces , 2020 .
[47] Masayuki Itô,et al. Positive Solutions of Quasilinear Elliptic Equations with Critical Orlicz-Sobolev Nonlinearity on RN , 2006 .
[48] M. Cuesta. Minimax theorems on C1 manifolds via Ekeland variational principle , 2003 .
[49] V. Mustonen,et al. An eigenvalue problem for generalized Laplacian in Orlicz—Sobolev spaces , 1999, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[50] J. García Azorero,et al. Existence and nonuniqueness for the p-Laplacian nonlinear Eigenvalues , 1987 .
[51] J.-L. Lions,et al. Simplicit'e et isolation de la premi`ere valeur propre du p-Laplacien avec poids , 1987 .
[52] J. G. Azorero,et al. Existence and nonuniqueness for the p-laplacian , 1987 .
[53] J. Necas,et al. Spectral theory of nonlinear operators , 1973 .
[54] J. Necas,et al. LJUSTERNIK‐SCHNIRELMANN Theorem and Nonlinear Eigenvalue Problems , 1972 .
[55] Felix E. Browder,et al. Existence theorems for nonlinear partial di erential equations , 1970 .
[56] F. Browder. Variational methods for nonlinear elliptic eigenvalue problems , 1965 .
[57] Israel Halperin. Function Spaces , 1953, Canadian Journal of Mathematics.
[58] An L,et al. Eigenvalue Problems for the P-laplacian , 2022 .