Lasing threshold of thresholdless and non-thresholdless metal-semiconductor nanolasers.

The recently developed plasmonic and photonic metal-semiconductor nanolasers feature unique properties, such as ultra-small mode volume and footprint, high Purcell factor, and ultra-fast modulation. However, it is often difficult to recognize when the transition to lasing occurs, while the most important feature of laser radiation, i.e., coherence, is available only above the lasing threshold. Here we systematically study the second-order coherence properties of metal-semiconductor nanolasers at both low- and high-pump rates. We find the lasing threshold using a clear coherence definition and derive a simple expression for the threshold pump current (optical pump power), which can be applied to most thresholdless and non-thresholdless metal-semiconductor nanolasers.

[1]  Xiang Zhang,et al.  Plasmon lasers at deep subwavelength scale , 2009, Nature.

[2]  Anatoly V Zayats,et al.  Surface plasmon polariton amplification upon electrical injection in highly integrated plasmonic circuits. , 2012, Nano letters.

[3]  Jung Min Lee,et al.  A high-resolution strain-gauge nanolaser , 2016, Nature Communications.

[4]  Gennady Shvets,et al.  Plasmonic Nanolaser Using Epitaxially Grown Silver Film , 2012, Science.

[5]  C. Z. Ning,et al.  What is Laser Threshold? , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[6]  Jean-Jacques Greffet,et al.  Coherent spontaneous emission of light by thermal sources , 2004 .

[7]  van Pj René Veldhoven,et al.  Record performance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature. , 2012, Optics express.

[8]  Weng W. Chow,et al.  Emission properties of nanolasers during the transition to lasing , 2014, Light: Science & Applications.

[9]  Machida,et al.  Observation of amplitude squeezing in a constant-current-driven semiconductor laser. , 1987, Physical review letters.

[10]  S. Ritter,et al.  Emission properties and photon statistics of a single quantum dot laser. , 2010, Optics express.

[11]  Y. Fainman,et al.  Dynamic hysteresis in a coherent high-β nanolaser , 2016 .

[12]  Antoine Godard,et al.  Measuring photon bunching at ultrashort timescale by two-photon absorption in semiconductors , 2009 .

[13]  Roberto Morandotti,et al.  Second-order coherence properties of metallic nanolasers , 2016 .

[14]  M. Smit,et al.  Lasing in metallic-coated nanocavities , 2007 .

[15]  Xiang Zhang,et al.  Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. , 2010, Nature materials.

[16]  Gerd Leuchs,et al.  30 years of squeezed light generation , 2015, 1511.03250.

[17]  Masahiro Asada,et al.  Intraband relaxation time in quantum-well lasers , 1989 .

[18]  T. H. Gfroerer,et al.  Temperature dependence of nonradiative recombination in low-band gap InxGa1−xAs/InAsyP1−y double heterostructures grown on InP substrates , 2003 .

[19]  M. Gather,et al.  Advances in small lasers , 2014, Nature Photonics.

[20]  Yeshaiahu Fainman,et al.  Room-temperature subwavelength metallo-dielectric lasers , 2010 .

[21]  Guangyuan Li,et al.  A room temperature low-threshold ultraviolet plasmonic nanolaser , 2014, Nature Communications.

[22]  R. Carminati,et al.  Coherent emission of light by thermal sources , 2002, Nature.

[23]  Frank Jahnke,et al.  Semiconductor model for quantum-dot-based microcavity lasers , 2007 .

[24]  Chih-Kang Shih,et al.  All-color plasmonic nanolasers with ultralow thresholds: autotuning mechanism for single-mode lasing. , 2014, Nano letters.

[25]  Carmichael,et al.  Photon statistics of a cavity-QED laser: A comment on the laser-phase-transition analogy. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[26]  Fouad Karouta,et al.  Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. , 2009, Optics express.

[27]  A. Mizrahi,et al.  Thresholdless nanoscale coaxial lasers , 2011, Nature.

[28]  D. Fedyanin Toward an electrically pumped spaser. , 2012, Optics letters.

[29]  M. Stockman Nanoplasmonics: past, present, and glimpse into future. , 2011, Optics express.

[30]  Yeshaiahu Fainman,et al.  Subwavelength semiconductor lasers for dense chip-scale integration , 2014 .

[31]  Homogeneous linewidth and linewidth enhancement factor for a GaAs semiconductor laser , 1986 .

[32]  Christian Schneider,et al.  Emission from quantum-dot high-β microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling , 2016, Light: Science & Applications.

[33]  Cun-Zheng Ning,et al.  Metallic subwavelength-cavity semiconductor nanolasers , 2012, Light: Science & Applications.

[34]  A. Jann,et al.  Quantum-noise reduction in semiconductor lasers , 1996 .

[35]  Optical constant of thin gold films: Structural morphology determined optical response , 2017 .

[36]  M. Bayer,et al.  Direct observation of correlations between individual photon emission events of a microcavity laser , 2009, Nature.

[37]  H. Yokoyama,et al.  Rate equation analysis of microcavity lasers , 1989 .

[38]  Rajan P Kulkarni,et al.  Label-Free, Single-Molecule Detection with Optical Microcavities , 2007, Science.

[39]  Y. Fainman,et al.  Amorphous Al2O3 Shield for Thermal Management in Electrically Pumped Metallo-Dielectric Nanolasers , 2014, IEEE Journal of Quantum Electronics.