A morphological, affine, and Galilean invariant scale-space for movies

We study a model of multiscale analysis (or scale-space) applied to movies. This model comes from a thorough formalization that has been done in the theory of scale-space of static image. This formulation has led to associate with each multiscale analysis a partial differential equation (PDE). We intend here to examine the case of movies, and to insist on the motion aspects. More precisely, it has been proved in that there exists a unique affine and morphological and Galilean invariant scale-space for movies, the AMG model. This model is described by a partial differential equation. In this paper,we focus on terms appearing in that equation. We show that this model provides a reliable definition of an optical multiscale acceleration. At the practical level, scale is interpreted as a way of characterizing reliable trajectories. As we prove by experiments,the AMG model is a riddle for decimating spurious trajectories due to any kinds of nonadditive impurities and noise. Simple discrete formulae are given to implement the model.

[1]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[2]  Jens Arnspang,et al.  Optic Acceleration , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[3]  O. Faugeras,et al.  Sur le mouvement des courbes tridimensionnelles et sa relation avec le flot optique , 1991 .

[4]  Andrew P. Witkin,et al.  Scale-space filtering: A new approach to multi-scale description , 1984, ICASSP.

[5]  A. Murat Tekalp,et al.  Digital Video Processing , 1995 .

[6]  Hans-Hellmut Nagel,et al.  On the Estimation of Optical Flow: Relations between Different Approaches and Some New Results , 1987, Artif. Intell..

[7]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[8]  Alan L. Yuille,et al.  The Motion Coherence Theory , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[9]  Hans-Hellmut Nagel,et al.  Image Sequences - Ten (Octal) Years - from phenomenology towards a Theoretical Foundation , 1988, Int. J. Pattern Recognit. Artif. Intell..

[10]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[11]  Tony Lindeberg,et al.  Scale-Space with Casual Time Direction , 1996, ECCV.

[12]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[13]  J. Gibson The perception of the visual world , 1951 .

[14]  Ajit Singh,et al.  Image-flow computation: estimation-theoretic framework, unification and integration , 1990 .

[15]  T. Lindeberg Scale-space with Causal Time Direction , 1996 .

[16]  James H. Duncan,et al.  Temporal Edges: The Detection Of Motion And The Computation Of Optical Flow , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[17]  F. Guichard Axiomatisation des analyses multi-échelles d'images et de films , 1994 .

[18]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Claude L. Fennema,et al.  Velocity determination in scenes containing several moving objects , 1979 .

[20]  S. McKee,et al.  Temporal coherence theory for the detection and measurement of visual motion , 1995, Vision Research.

[21]  P. Lions,et al.  Axioms and fundamental equations of image processing , 1993 .

[22]  Ellen C. Hildreth,et al.  Measurement of Visual Motion , 1984 .

[23]  M. A. Snyder On the Mathematical Foundations of Smoothness Constraints for the Determination of Optical Flow and for Surface Reconstruction , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Alessandro Verri,et al.  Against Quantitative Optical Flow , 1987 .

[25]  J. Morel,et al.  Partial differential equations and image iterative filtering , 1997 .

[26]  David J. Heeger,et al.  Optical flow from spatialtemporal filters , 1987 .

[27]  Hans-Hellmut Nagel,et al.  An Investigation of Smoothness Constraints for the Estimation of Displacement Vector Fields from Image Sequences , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Edward H. Adelson,et al.  The extraction of Spatio-temporal Energy in Human and Machine Vision , 1997 .

[29]  A. Verri,et al.  Constraints for the computation of optical flow , 1989, [1989] Proceedings. Workshop on Visual Motion.

[30]  Luis Alvarez,et al.  Axiomes et 'equations fondamentales du traitement d''images , 1992 .

[31]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.