Quantification of cell-substratum interactions by atomic force microscopy.

[1]  P. Singer,et al.  Acidic Mine Drainage: The Rate-Determining Step , 1970, Science.

[2]  M. Mackintosh Nitrogen fixation by thiobacillus ferrooxidans , 1978 .

[3]  Douglas E. Rawlings,et al.  Mining with Microbes , 1995, Bio/Technology.

[4]  W. Sand,et al.  Sulfur chemistry in bacterial leaching of pyrite , 1996, Applied and environmental microbiology.

[5]  Matthias Rief,et al.  Single Molecule Force Spectroscopy on Polysaccharides by Atomic Force Microscopy , 1997, Science.

[6]  G. Georgiou,et al.  Molecular determinants of bacterial adhesion monitored by atomic force microscopy. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[7]  W. Sand,et al.  (Bio)chemistry of bacterial leaching - direct vs. indirect bioleaching , 2001 .

[8]  T. Beveridge,et al.  Bacterial Recognition of Mineral Surfaces: Nanoscale Interactions Between Shewanella and α-FeOOH , 2001, Science.

[9]  J. Banfield,et al.  Community structure and metabolism through reconstruction of microbial genomes from the environment , 2004, Nature.

[10]  H. C. van der Mei,et al.  Comparison of Atomic Force Microscopy Interaction Forces between Bacteria and Silicon Nitride Substrata for Three Commonly Used Immobilization Methods , 2004, Applied and Environmental Microbiology.

[11]  S. F. D’souza,et al.  Immobilization of yeast cells by adhesion to glass surface using polyethylenimine , 1986, Biotechnology Letters.

[12]  Y. Dufrêne,et al.  Detection and localization of single molecular recognition events using atomic force microscopy , 2006, Nature Methods.

[13]  W. Sand,et al.  Novel Combination of Atomic Force Microscopy and Epifluorescence Microscopy for Visualization of Leaching Bacteria on Pyrite , 2007, Applied and Environmental Microbiology.

[14]  Haeshin Lee,et al.  Mussel-Inspired Surface Chemistry for Multifunctional Coatings , 2007, Science.

[15]  V. Dupres,et al.  Stretching polysaccharides on live cells using single molecule force spectroscopy , 2009, Nature Protocols.

[16]  Michael Krieg,et al.  New frontiers in atomic force microscopy: analyzing interactions from single-molecules to cells. , 2009, Current opinion in biotechnology.

[17]  Yves F Dufrêne,et al.  Force-induced formation and propagation of adhesion nanodomains in living fungal cells , 2010, Proceedings of the National Academy of Sciences.

[18]  H. Flemming,et al.  The biofilm matrix , 2010, Nature Reviews Microbiology.

[19]  T. Gu,et al.  Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis , 2013 .

[20]  P. Lipke,et al.  Quantifying the forces driving cell-cell adhesion in a fungal pathogen. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[21]  A. Beaussart,et al.  Quantifying the forces guiding microbial cell adhesion using single-cell force spectroscopy , 2014, Nature Protocols.

[22]  Pedro A. Galleguillos,et al.  Variation in microbial community from predominantly mesophilic to thermotolerant and moderately thermophilic species in an industrial copper heap bioleaching operation , 2014 .

[23]  T. Gu,et al.  Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm. , 2015, Bioelectrochemistry.

[24]  S. Rice,et al.  Biofilms: an emergent form of bacterial life , 2016, Nature Reviews Microbiology.

[25]  Qian Li,et al.  Enhancement of Biofilm Formation on Pyrite by Sulfobacillus thermosulfidooxidans , 2016 .