Fuzzy model predictive control of non-linear processes using genetic algorithms

Abstract This paper introduces a new fuzzy control technique, which belongs to the popular family of control algorithms, called Model Predictive Controllers. The method is based on a dynamic fuzzy model of the process to be controlled, which is used for predicting the future behavior of the output variables. A non-linear optimization problem is then formulated, which minimizes the difference between the model predictions and the desired trajectory over the prediction horizon and the control energy over a shorter control horizon. The problem is solved on line using a specially designed genetic algorithm, which has a number of advantages over conventional non-linear optimization techniques. The method can be used with any type of fuzzy model and is particularly useful when a direct fuzzy controller cannot be designed due to the complexity of the process and the difficulty in developing fuzzy control rules. The method is illustrated via the application to a non-linear single-input single-output reactor, where a Takagi–Sugeno model serves as a predictor of the process future behavior.

[1]  Takanori Shibata,et al.  Genetic Algorithms And Fuzzy Logic Systems Soft Computing Perspectives , 1997 .

[2]  David W. Clarke,et al.  Generalized Predictive Control - Part II Extensions and interpretations , 1987, Autom..

[3]  Ferenc Szeifert,et al.  Hybrid Fuzzy Convolution Model and its Application in Predictive Control , 2000 .

[4]  Robert Babuška,et al.  Genetic algorithms for optimization in predictive control , 1997 .

[5]  C. R. Cutler,et al.  Optimal Solution of Dynamic Matrix Control with Linear Programing Techniques (LDMC) , 1985, 1985 American Control Conference.

[6]  Tanja Urbancic,et al.  Genetic algorithms in controller design and tuning , 1993, IEEE Trans. Syst. Man Cybern..

[7]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[8]  Robert Babuska,et al.  Fuzzy predictive control applied to an air-conditioning system , 1997 .

[9]  C. R. Cutler,et al.  Dynamic matrix control¿A computer control algorithm , 1979 .

[10]  Y. P. Gupta,et al.  Constrained multivariable control of a distillation column using a simplified model predictive control algorithm , 2001 .

[11]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[12]  Rolf Isermann,et al.  Adaptive predictive control of a heat exchanger based on a fuzzy model , 1998 .

[13]  David W. Clarke,et al.  Generalized predictive control - Part I. The basic algorithm , 1987, Autom..

[14]  Andreas Geyer-Schulz,et al.  Fuzzy Rule-Based Expert Systems and Genetic Machine Learning , 1996 .

[15]  Peter J. Fleming,et al.  Evolutionary algorithms in control systems engineering: a survey , 2002 .

[16]  Bernard P. Zeigler,et al.  Designing fuzzy net controllers using genetic algorithms , 1995 .

[17]  D. M. Prett,et al.  Optimization and constrained multivariable control of a catalytic cracking unit , 1980 .

[18]  Stephen L. Chiu,et al.  Fuzzy Model Identification Based on Cluster Estimation , 1994, J. Intell. Fuzzy Syst..

[19]  T. Fukuda,et al.  Self-tuning fuzzy modeling with adaptive membership function, rules, and hierarchical structure based on genetic algorithm , 1995 .

[20]  Moses O. Tadé,et al.  Nonlinear model-based process control , 2000 .

[21]  Carlos E. Garcia,et al.  QUADRATIC PROGRAMMING SOLUTION OF DYNAMIC MATRIX CONTROL (QDMC) , 1986 .

[22]  S. W. Kim,et al.  A new adaptive fuzzy controller using the parallel structure of fuzzy controller and its application , 1996, Fuzzy Sets Syst..

[23]  Ian K. Craig,et al.  Model predictive control of an electric arc furnace off-gas process , 2000 .

[24]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[25]  C. L. Karr,et al.  Fuzzy control of pH using genetic algorithms , 1993, IEEE Trans. Fuzzy Syst..

[26]  J. Richalet,et al.  Model predictive heuristic control: Applications to industrial processes , 1978, Autom..

[27]  Helen H. Lou,et al.  Fuzzy model predictive control , 2000, IEEE Trans. Fuzzy Syst..

[28]  J. L. Testud,et al.  Paper: Model predictive heuristic control , 1978 .

[29]  Li-Xin Wang,et al.  Adaptive fuzzy systems and control , 1994 .

[30]  Günter Rudolph,et al.  Convergence analysis of canonical genetic algorithms , 1994, IEEE Trans. Neural Networks.

[31]  João M. Lemos,et al.  Long-range predictive adaptive fuzzy relational control , 1995 .

[32]  Anthony Tzes,et al.  Genetic-based fuzzy clustering for DC-motor friction identification and compensation , 1998, IEEE Trans. Control. Syst. Technol..

[33]  R. Mehra,et al.  Theoretical considerations on model algorithmic control for nonminimum phase systems , 1980 .

[34]  Bart De Moor,et al.  A high performance model predictive controller:: application on a polyethylene gas phase reactor , 2001 .

[35]  Predrag D. Vukovic,et al.  One-step ahead predictive fuzzy controller , 2001, Fuzzy Sets Syst..

[36]  Kazuyuki Shimizu,et al.  On‐line optimisation of culture temperature for ethanol fermentation using a genetic algorithm , 1996 .

[37]  Carlos E. Garcia,et al.  Internal model control. A unifying review and some new results , 1982 .