Interactive Multiobjective Optimization from a Learning Perspective

Learning is inherently connected with Interactive Multiobjective Optimization (IMO), therefore, a systematic analysis of IMO from the learning perspective is worthwhile. After an introduction to the nature and the interest of learning within IMO, we consider two complementary aspects of learning: individual learning, i.e., what the decision maker can learn, and model or machine learning, i.e., what the formal model can learn in the course of an IMO procedure. Finally, we discuss how one might investigate learning experimentally, in order to understand how to better support decision makers. Experiments involving a human decision maker or a virtual decision maker are considered.

[1]  James Corner,et al.  The effects of anchoring in interactive MCDM solution methods , 1997, Comput. Oper. Res..

[2]  S. Merriam,et al.  Learning in Adulthood: A Comprehensive Guide , 1991 .

[3]  Andrzej P. Wierzbicki,et al.  The Use of Reference Objectives in Multiobjective Optimization , 1979 .

[4]  S. Zionts,et al.  An Interactive Programming Method for Solving the Multiple Criteria Problem , 1976 .

[5]  Philippe Vincke,et al.  Description and analysis of some representative interactive multicriteria procedures , 1989 .

[6]  R. Benayoun,et al.  Linear programming with multiple objective functions: Step method (stem) , 1971, Math. Program..

[7]  Valerie Belton,et al.  V·I·S·A — VIM for MCDA , 1989 .

[8]  S. Greco,et al.  Decision Rule Approach , 2005 .

[9]  John J. Bernardo,et al.  A comparison of interactive multiple-objective decision making procedures , 1987, Comput. Oper. Res..

[10]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[11]  Pekka Korhonen,et al.  Behavioral Issues in MCDM: Neglected Research Questions , 1996 .

[12]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[13]  E. Wenger,et al.  Legitimate Peripheral Participation , 1991 .

[14]  Arthur M. Geoffrion,et al.  An Interactive Approach for Multi-Criterion Optimization, with an Application to the Operation of an Academic Department , 1972 .

[15]  D. Kolb Experiential Learning: Experience as the Source of Learning and Development , 1983 .

[16]  Kaisa Miettinen,et al.  Comparative evaluation of some interactive reference point-based methods for multi-objective optimisation , 1999, J. Oper. Res. Soc..

[17]  Salvatore Greco,et al.  Rough sets theory for multicriteria decision analysis , 2001, Eur. J. Oper. Res..

[18]  José Rui Figueira,et al.  Building a set of additive value functions representing a reference preorder and intensities of preference: GRIP method , 2009, Eur. J. Oper. Res..

[19]  Lorraine R. Gardiner,et al.  A comparison of two reference point methods in multiple objective mathematical programming , 2003, Eur. J. Oper. Res..

[20]  Daniel Vanderpooten,et al.  The interactive approach in MCDA: A technical framework and some basic conceptions , 1989 .

[21]  Alec Morton,et al.  Behavioural decision theory for multi-criteria decision analysis: a guided tour , 2009, J. Oper. Res. Soc..

[22]  Salvatore Greco,et al.  Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions , 2008, Eur. J. Oper. Res..

[23]  J. March Decisions and Organizations , 1991 .

[24]  Yasemin Aksoy,et al.  Comparative studies in interactive multiple objective mathematical programming , 1996 .

[25]  P. Fishburn Methods of Estimating Additive Utilities , 1967 .

[26]  R. Słowiński,et al.  Molp with an interactive assessment of a piecewise linear utility function , 1987 .

[27]  Andrzej Jaszkiewicz,et al.  The 'Light Beam Search' approach - an overview of methodology and applications , 1999, Eur. J. Oper. Res..

[28]  Salvatore Greco,et al.  Rough Set Based Decision Support , 2005 .

[29]  Derek W. Bunn,et al.  Multiple Criteria Problem Solving , 1979 .

[30]  Kaisa Miettinen,et al.  Experiments with classification-based scalarizing functions in interactive multiobjective optimization , 2006, Eur. J. Oper. Res..

[31]  W. Edwards,et al.  Decision Analysis and Behavioral Research , 1986 .

[32]  Theodor J. Stewart,et al.  Multiple Criteria Decision Analysis , 2001 .

[33]  Matthias Ehrgott,et al.  Multiple criteria decision analysis: state of the art surveys , 2005 .

[34]  Petrica C. Pop,et al.  A new relaxation method for the generalized minimum spanning tree problem , 2006, Eur. J. Oper. Res..

[35]  David L. Olson,et al.  A comparative multiobjective programming study , 1988 .

[36]  Yacov Y. Haimes,et al.  Multiobjective Decision Making: Theory and Methodology , 1983 .

[37]  H. Gardner,et al.  Frames of Mind: The Theory of Multiple Intelligences , 1983 .

[38]  Graham Kendall,et al.  Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques , 2013 .

[39]  Valerie Belton,et al.  Decision support systems: Learning from visual interactive modelling , 1994, Decis. Support Syst..

[40]  J. Mezirow Transformative Dimensions of Adult Learning , 1991 .

[41]  Ivan Bratko,et al.  Machine Learning and Data Mining; Methods and Applications , 1998 .

[42]  Bernard Roy,et al.  Decision science or decision-aid science? , 1993 .

[43]  Etienne Wenger,et al.  Situated Learning: Legitimate Peripheral Participation , 1991 .

[44]  David L. Olson,et al.  Review of Empirical Studies in Multiobjective Mathematical Programming: Subject Reflection of Nonlinear Utility and Learning , 1992 .

[45]  A. Tversky,et al.  Loss Aversion in Riskless Choice: A Reference-Dependent Model , 1991 .

[46]  I. H. Harrison,et al.  A comprehensive guide , 1986 .

[47]  Benjamin F. Hobbs,et al.  What Can We Learn from Experiments in Multiobjective Decision Analysis? , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[48]  Christopher P. Puto,et al.  Adding Asymmetrically Dominated Alternatives: Violations of Regularity & the Similarity Hypothesis. , 1981 .

[49]  O. Larichev Cognitive validity in design of decision‐aiding techniques , 1992 .

[50]  D. W. Corne,et al.  A Technique for Evaluation of Interactive Evolutionary Systems , 2004 .

[51]  A. D. Nikiforov,et al.  Multicriterion linear programming problems: (Analytical survey) , 1987 .

[52]  Stelios H. Zanakis,et al.  Multi-attribute decision making: A simulation comparison of select methods , 1998, Eur. J. Oper. Res..

[53]  H. A. Eschenauer,et al.  Interactive Multicriteria Optimization in Design Process , 1990 .

[54]  H. G. Daellenbach,et al.  A comparative evaluation of interactive solution methods for multiple objective decision models , 1987 .

[55]  J. Siskos Assessing a set of additive utility functions for multicriteria decision-making , 1982 .

[56]  Jyrki Wallenius,et al.  Comparative Evaluation of Some Interactive Approaches to Multicriterion Optimization , 1975 .

[57]  Andrzej Osyczka,et al.  Multicriteria Design Optimization: Procedures and Applications , 1990 .

[58]  David C. Lane,et al.  Modelling as learning , 1990 .

[59]  Ralph E. Steuer,et al.  Multiple Criteria Decision Making, Multiattribute Utility Theory: The Next Ten Years , 1992 .

[60]  A. Tversky,et al.  Judgment under Uncertainty , 1982 .

[61]  Ralph E. Steuer,et al.  An interactive weighted Tchebycheff procedure for multiple objective programming , 1983, Math. Program..

[62]  Juan J. Gonzalez,et al.  A comparison of two interactive MCDM procedures , 1989 .

[63]  Kaisa Miettinen,et al.  Synchronous approach in interactive multiobjective optimization , 2006, Eur. J. Oper. Res..

[64]  M. Easterby-Smith,et al.  Management Research: An Introduction , 1991 .

[65]  R. S. Laundy,et al.  Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .

[66]  S. Narula,et al.  Reference Direction Approach for Solving Multiple Objective Nonlinear Programming Problems , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[67]  Mariano Luque,et al.  Promoin: An Interactive System for Multiobjective Programming , 2002, Int. J. Inf. Technol. Decis. Mak..

[68]  Ralph L. Keeney,et al.  Value-Focused Thinking: A Path to Creative Decisionmaking , 1992 .

[69]  Colin Robson,et al.  Real World Research: A Resource for Social Scientists and Practitioner-Researchers , 1993 .

[70]  C. Cooper Theories of Group Processes , 1976 .

[71]  Simon French,et al.  Multiple Criteria Decision Making: Theory and Application , 1981 .

[72]  J S Hammond,et al.  The hidden traps in decision making. , 1999, Clinical laboratory management review : official publication of the Clinical Laboratory Management Association.

[73]  H. Bradbury,et al.  Handbook of action research , 2006 .

[74]  J. March Bounded rationality, ambiguity, and the engineering of choice , 1978 .

[75]  Yacov Y. Haimes,et al.  The Interactive Surrogate Worth Trade-Off (ISWT) Method for Multiobjective Decision-Making , 1978 .

[76]  Simon French,et al.  Explaining and justifying the advice of a decision support system: a natural language generation approach , 2003, Expert Syst. Appl..

[77]  S. Zionts,et al.  An Interactive Multiple Objective Linear Programming Method for a Class of Underlying Nonlinear Utility Functions , 1983 .